Yeast Rad55 and Rad57 proteins form a heterodimer that functions with replication protein A to promote DNA strand exchange by Rad51 recombinase

Research output: Contribution to journalArticle

437 Scopus citations

Abstract

Saccharomyces cerevisiae RAD51, RAD55, and RAD57 genes, required for genetic recombination and DNA double-strand-break repair, encode proteins homologous to one another and to the Escherichia coil RecA protein. Rad51 protein catalyzes the DNA strand-exchange reaction with a dependence on ATP and on the heterotrimeric single-strand DNA (ssDNA) binding factor replication protein A (RPA). By several independent criteria, RAD55- and RAD57-encoded products are shown here to exist as a stable heterodimer, with a dissociation constant of <2 x 10-10 M. In strand exchange, the reaction proceeds efficiently if RPA is incorporated after nucleation of Rad51 onto ssDNA, but if RPA is present during the nucleation phase, as is likely the case in vivo, the amount of strand-exchange products becomes relatively insignificant. Inclusion of the Rad55-Rad57 heterodimer with Rad51 and RPA results in a marked stimulation of strand exchange, providing evidence for a role of the Rad55-Rad57 heterodimer in overcoming the inhibitory effect of RPA.

Original languageEnglish (US)
Pages (from-to)1111-1121
Number of pages11
JournalGenes and Development
Volume11
Issue number9
DOIs
StatePublished - May 1 1997

Keywords

  • RAD51
  • Rad55-Rad57 complex
  • RccA
  • S. cerevisiae
  • recombination

ASJC Scopus subject areas

  • Genetics
  • Developmental Biology

Fingerprint Dive into the research topics of 'Yeast Rad55 and Rad57 proteins form a heterodimer that functions with replication protein A to promote DNA strand exchange by Rad51 recombinase'. Together they form a unique fingerprint.

  • Cite this