TY - JOUR
T1 - WISE
T2 - whole-scenario embryo identification using self-supervised learning encoder in IVF
AU - Liu, Mark
AU - Lee, Chun I.
AU - Tzeng, Chii Ruey
AU - Lai, Hsing Hua
AU - Huang, Yulun
AU - Chang, T. Arthur
N1 - Publisher Copyright:
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024.
PY - 2024/4
Y1 - 2024/4
N2 - Purpose: To study the effectiveness of whole-scenario embryo identification using a self-supervised learning encoder (WISE) in in vitro fertilization (IVF) on time-lapse, cross-device, and cryo-thawed scenarios. Methods: WISE was based on the vision transformer (ViT) architecture and masked autoencoders (MAE), a self-supervised learning (SSL) method. To train WISE, we prepared three datasets including the SSL pre-training dataset, the time-lapse identification dataset, and the cross-device identification dataset. To identify whether pairs of images were from the same embryos in different scenarios in the downstream identification tasks, embryo images including time-lapse and microscope images were first pre-processed through object detection, cropping, padding, and resizing, and then fed into WISE to get predictions. Results: WISE could accurately identify embryos in the three scenarios. The accuracy was 99.89% on the time-lapse identification dataset, and 83.55% on the cross-device identification dataset. Besides, we subdivided a cryo-thawed evaluation set from the cross-device test set to have a better estimation of how WISE performs in the real-world, and it reached an accuracy of 82.22%. There were approximately 10% improvements in cross-device and cryo-thawed identification tasks after the SSL method was applied. Besides, WISE demonstrated improvements in the accuracy of 9.5%, 12%, and 18% over embryologists in the three scenarios. Conclusion: SSL methods can improve embryo identification accuracy even when dealing with cross-device and cryo-thawed paired images. The study is the first to apply SSL in embryo identification, and the results show the promise of WISE for future application in embryo witnessing.
AB - Purpose: To study the effectiveness of whole-scenario embryo identification using a self-supervised learning encoder (WISE) in in vitro fertilization (IVF) on time-lapse, cross-device, and cryo-thawed scenarios. Methods: WISE was based on the vision transformer (ViT) architecture and masked autoencoders (MAE), a self-supervised learning (SSL) method. To train WISE, we prepared three datasets including the SSL pre-training dataset, the time-lapse identification dataset, and the cross-device identification dataset. To identify whether pairs of images were from the same embryos in different scenarios in the downstream identification tasks, embryo images including time-lapse and microscope images were first pre-processed through object detection, cropping, padding, and resizing, and then fed into WISE to get predictions. Results: WISE could accurately identify embryos in the three scenarios. The accuracy was 99.89% on the time-lapse identification dataset, and 83.55% on the cross-device identification dataset. Besides, we subdivided a cryo-thawed evaluation set from the cross-device test set to have a better estimation of how WISE performs in the real-world, and it reached an accuracy of 82.22%. There were approximately 10% improvements in cross-device and cryo-thawed identification tasks after the SSL method was applied. Besides, WISE demonstrated improvements in the accuracy of 9.5%, 12%, and 18% over embryologists in the three scenarios. Conclusion: SSL methods can improve embryo identification accuracy even when dealing with cross-device and cryo-thawed paired images. The study is the first to apply SSL in embryo identification, and the results show the promise of WISE for future application in embryo witnessing.
KW - In vitro fertilization
KW - Non-conformance
KW - Self-supervised learning
KW - Vision transformer
KW - Whole-scenario embryo identification
KW - Witness
UR - http://www.scopus.com/inward/record.url?scp=85187423051&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85187423051&partnerID=8YFLogxK
U2 - 10.1007/s10815-024-03080-2
DO - 10.1007/s10815-024-03080-2
M3 - Article
C2 - 38470553
AN - SCOPUS:85187423051
SN - 1058-0468
VL - 41
SP - 967
EP - 978
JO - Journal of Assisted Reproduction and Genetics
JF - Journal of Assisted Reproduction and Genetics
IS - 4
ER -