TY - JOUR
T1 - Whole body overexpression of PGC-1α has opposite effects on hepatic and muscle insulin sensitivity
AU - Liang, Huiyun
AU - Balas, Bogdan
AU - Tantiwong, Puntip
AU - Dube, John
AU - Goodpaster, Bret H.
AU - O'Doherty, Robert M.
AU - DeFronzo, Ralph A.
AU - Richardson, Arlan
AU - Musi, Nicolas
AU - Ward, Walter F.
PY - 2009/4
Y1 - 2009/4
N2 - Type 2 diabetes is characterized by fasting hyperglycemia, secondary to hepatic insulin resistance and increased glucose production. Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) is a transcriptional coactivator that is thought to control adaptive responses to physiological stimuli. In liver, PGC-1α expression is induced by fasting, and this effect promotes gluconeogenesis. To examine whether PGC-1α is involved in the pathogenesis of hepatic insulin resistance, we generated transgenic (TG) mice with whole body overexpression of human PGC-1α and evaluated glucose homeostasis with a euglycemic-hyperinsulinemic clamp. PGC-1α was moderately (∼2-fold) overexpressed in liver, skeletal muscle, brain, and heart of TG mice. In liver, PGC-1α overexpression resulted in increased expression of hepatocyte nuclear factor-4α and the gluconeogenic enzymes phosphoenolpyruvate carboxykinase and glucose-6- phosphatase. PGC-1α overexpression caused hepatic insulin resistance, manifested by higher glucose production and diminished insulin suppression of gluconeogenesis. Paradoxically, PGC-1α overexpression improved muscle insulin sensitivity, as evidenced by elevated insulin-stimulated Akt phosphorylation and peripheral glucose disposal. Content of myoglobin and troponin I slow protein was increased in muscle of TG mice, indicating fiber-type switching. PGC-1α overexpression also led to lower reactive oxygen species production by mitochondria and reduced IKK/IκB signaling in muscle. Feeding a high-fat diet to TG mice eliminated the increased muscle insulin sensitivity. The dichotomous effect of PGC-1α overexpression in liver and muscle suggests that PGC-1α is a fuel gauge that couples energy demands (muscle) with the corresponding fuel supply (liver). Thus, under conditions of physiological stress (i.e., prolonged fast and exercise training), increased hepatic glucose production may help sustain glucose utilization in peripheral tissues.
AB - Type 2 diabetes is characterized by fasting hyperglycemia, secondary to hepatic insulin resistance and increased glucose production. Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) is a transcriptional coactivator that is thought to control adaptive responses to physiological stimuli. In liver, PGC-1α expression is induced by fasting, and this effect promotes gluconeogenesis. To examine whether PGC-1α is involved in the pathogenesis of hepatic insulin resistance, we generated transgenic (TG) mice with whole body overexpression of human PGC-1α and evaluated glucose homeostasis with a euglycemic-hyperinsulinemic clamp. PGC-1α was moderately (∼2-fold) overexpressed in liver, skeletal muscle, brain, and heart of TG mice. In liver, PGC-1α overexpression resulted in increased expression of hepatocyte nuclear factor-4α and the gluconeogenic enzymes phosphoenolpyruvate carboxykinase and glucose-6- phosphatase. PGC-1α overexpression caused hepatic insulin resistance, manifested by higher glucose production and diminished insulin suppression of gluconeogenesis. Paradoxically, PGC-1α overexpression improved muscle insulin sensitivity, as evidenced by elevated insulin-stimulated Akt phosphorylation and peripheral glucose disposal. Content of myoglobin and troponin I slow protein was increased in muscle of TG mice, indicating fiber-type switching. PGC-1α overexpression also led to lower reactive oxygen species production by mitochondria and reduced IKK/IκB signaling in muscle. Feeding a high-fat diet to TG mice eliminated the increased muscle insulin sensitivity. The dichotomous effect of PGC-1α overexpression in liver and muscle suggests that PGC-1α is a fuel gauge that couples energy demands (muscle) with the corresponding fuel supply (liver). Thus, under conditions of physiological stress (i.e., prolonged fast and exercise training), increased hepatic glucose production may help sustain glucose utilization in peripheral tissues.
KW - Diabetes
KW - Gluconeogenesis
KW - Glucose-6-phosphatase
KW - Phosphoenolpyruvate carboxykinase
UR - http://www.scopus.com/inward/record.url?scp=65649148341&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=65649148341&partnerID=8YFLogxK
U2 - 10.1152/ajpendo.90292.2008
DO - 10.1152/ajpendo.90292.2008
M3 - Article
C2 - 19208857
AN - SCOPUS:65649148341
SN - 0193-1849
VL - 296
SP - E945-E954
JO - American Journal of Physiology - Endocrinology and Metabolism
JF - American Journal of Physiology - Endocrinology and Metabolism
IS - 4
ER -