TY - JOUR
T1 - Voxel-based morphometry in epileptic baboons
T2 - Parallels to human juvenile myoclonic epilepsy
AU - Szabó, C. Ákos
AU - Salinas, Felipe S.
N1 - Publisher Copyright:
© 2016 Elsevier B.V.
PY - 2016/8/1
Y1 - 2016/8/1
N2 - The epileptic baboon represents a natural model for genetic generalized epilepsy (GGE), closely resembling juvenile myoclonic epilepsy (JME). Due to functional neuroimaging and pathological differences between epileptic (SZ+) and asymptomatic control (CTL) baboons, we expected structural differences in gray matter concentration (GMC) using voxel-based morphometry (VBM). Standard anatomical (MP-RAGE) MRI scans using a 3T Siemens TIM Trio (Siemens, Erlangen, Germany) were available in 107 baboons (67 females; mean age 16 ± 6 years) with documented clinical histories and scalp-electroencephalography (EEG) results. For neuroimaging, baboons were anesthetized with isoflurane 1% (1-1.5 MAC) and paralyzed with vecuronium (0.1-0.3 mg/kg). Data processing and analysis were performed using FSL's VBM toolbox. GMC was compared between CTL and SZ+ baboons, epileptic baboons with interictal epileptic discharges on scalp EEG (SZ+/IED+), asymptomatic baboons with abnormal EEGs (SZ-/IED+), and IED+ baboons with (IED+/PS+) and without (IED+/PS-) photosensitivity, and the subgroups amongst themselves. Age and gender related changes in gray matter volumes were also included as confound regressors in the VBM analyses of each animal group. Significant increases in GMC were noted in the SZ+/IED+ subgroup compared to the CTL group, including bilaterally in the frontopolar, orbitofrontal and anterolateral temporal cortices, while decreases in GMC were noted in the right more than left primary visual cortices and in the specific nuclei of the thalamus, including reticular, anterior and medial dorsal nuclei. No significant differences were noted otherwise, except that SZ+/IED+ baboons demonstrated increased GMC in the globus pallidae bilaterally compared to the SZ-/IED+ group. Similar to human studies of JME, the epileptic baboons demonstrated GMC decreases in the thalami and occipital cortices, suggesting secondary injury due to chronic epilepsy. Cortical GMC, on the other hand, was increased in the anterior frontal and temporal lobes, also consistent with human JME studies. This VBM study may indicate a combination of developmental and acquired structural changes in the epileptic baboon.
AB - The epileptic baboon represents a natural model for genetic generalized epilepsy (GGE), closely resembling juvenile myoclonic epilepsy (JME). Due to functional neuroimaging and pathological differences between epileptic (SZ+) and asymptomatic control (CTL) baboons, we expected structural differences in gray matter concentration (GMC) using voxel-based morphometry (VBM). Standard anatomical (MP-RAGE) MRI scans using a 3T Siemens TIM Trio (Siemens, Erlangen, Germany) were available in 107 baboons (67 females; mean age 16 ± 6 years) with documented clinical histories and scalp-electroencephalography (EEG) results. For neuroimaging, baboons were anesthetized with isoflurane 1% (1-1.5 MAC) and paralyzed with vecuronium (0.1-0.3 mg/kg). Data processing and analysis were performed using FSL's VBM toolbox. GMC was compared between CTL and SZ+ baboons, epileptic baboons with interictal epileptic discharges on scalp EEG (SZ+/IED+), asymptomatic baboons with abnormal EEGs (SZ-/IED+), and IED+ baboons with (IED+/PS+) and without (IED+/PS-) photosensitivity, and the subgroups amongst themselves. Age and gender related changes in gray matter volumes were also included as confound regressors in the VBM analyses of each animal group. Significant increases in GMC were noted in the SZ+/IED+ subgroup compared to the CTL group, including bilaterally in the frontopolar, orbitofrontal and anterolateral temporal cortices, while decreases in GMC were noted in the right more than left primary visual cortices and in the specific nuclei of the thalamus, including reticular, anterior and medial dorsal nuclei. No significant differences were noted otherwise, except that SZ+/IED+ baboons demonstrated increased GMC in the globus pallidae bilaterally compared to the SZ-/IED+ group. Similar to human studies of JME, the epileptic baboons demonstrated GMC decreases in the thalami and occipital cortices, suggesting secondary injury due to chronic epilepsy. Cortical GMC, on the other hand, was increased in the anterior frontal and temporal lobes, also consistent with human JME studies. This VBM study may indicate a combination of developmental and acquired structural changes in the epileptic baboon.
KW - Baboon
KW - Genetic generalized epilepsy
KW - MRI
KW - Photosensitivity
KW - Voxel-based morphometry
UR - http://www.scopus.com/inward/record.url?scp=84971273130&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84971273130&partnerID=8YFLogxK
U2 - 10.1016/j.eplepsyres.2016.05.009
DO - 10.1016/j.eplepsyres.2016.05.009
M3 - Article
C2 - 27259066
AN - SCOPUS:84971273130
SN - 0920-1211
VL - 124
SP - 34
EP - 39
JO - Epilepsy Research
JF - Epilepsy Research
ER -