Virus-Based Toolkit for the Directed Synthesis of Magnetic and Semiconducting Nanowires

Chuanbin Mao, Daniel J. Solis, Brian D. Reiss, Stephen T. Kottmann, Rozamond Y. Sweeney, Andrew Hayhurst, George Georgiou, Brent Iverson, Angela M. Belcher

    Research output: Contribution to journalArticlepeer-review

    847 Scopus citations

    Abstract

    We report a virus-based scaffold for the synthesis of single-crystal ZnS, CdS, and freestanding chemically ordered CoPt and FePt nanowires, with the means of modifying substrate specificity through standard biological methods. Peptides (selected through an evolutionary screening process) that exhibit control of composition, size, and phase during nanoparticle nucleation have been expressed on the highly ordered filamentous capsid of the M13 bacteriophage. The incorporation of specific, nucleating peptides into the generic scaffold of the M13 coat structure provides a viable template for the directed synthesis of semiconducting and magnetic materials. Removal of the viral template by means of annealing promoted oriented aggregation-based crystal growth, forming individual crystalline nanowires. The unique ability to interchange substrate-specific peptides into the linear self-assembled filamentous construct of the M13 virus introduces a material tunability that has not been seen in previous synthetic routes. Therefore, this system provides a genetic toolkit for growing and organizing nanowires from semiconducting and magnetic materials.

    Original languageEnglish (US)
    Pages (from-to)213-217
    Number of pages5
    JournalScience
    Volume303
    Issue number5655
    DOIs
    StatePublished - Jan 9 2004

    ASJC Scopus subject areas

    • General

    Fingerprint Dive into the research topics of 'Virus-Based Toolkit for the Directed Synthesis of Magnetic and Semiconducting Nanowires'. Together they form a unique fingerprint.

    Cite this