TY - JOUR
T1 - Ventilatory-depressant effects of opioids alone and in combination with cannabinoids in rhesus monkeys
AU - Weed, Peter F.
AU - Gerak, Lisa R.
AU - France, Charles P.
N1 - Publisher Copyright:
© 2018 Elsevier B.V.
PY - 2018/8/15
Y1 - 2018/8/15
N2 - Pain is a serious health problem that is commonly treated with opioids, although the doses of opioids needed to treat pain are often similar to those that decrease respiration. Combining opioids with drugs that relieve pain through non-opioid mechanisms can decrease the doses of opioids needed for analgesia, resulting in an improved therapeutic window, but only if the doses of opioids that decrease respiration are not similarly decreased. Using small doses of opioids to treat pain has the potential to reduce the number of overdoses and deaths. This study investigated whether the cannabinoid receptor agonists Δ9-tetrahydrocannabinol (Δ9-THC) and CP 55,940 modify the ventilatory-depressant effects of morphine and fentanyl in three monkeys. Ventilatory parameters, including minute volume (VE), were monitored with a head plethysmograph. When given alone, morphine (0.032 – 10 mg/kg) and fentanyl (0.00032 – 0.1 mg/kg) dose dependently decreased VE. Doses of Δ9-THC (1 mg/kg) and CP 55,940 (0.01 mg/kg) that enhance the potency of opioids to produce antinociception modestly decreased ventilation when given alone but did not significantly change morphine or fentanyl dose-effect curves. A larger dose of CP 55,940 (0.032 mg/kg) shifted the fentanyl dose-effect curve downward in two monkeys, without significantly changing the morphine dose-effect curve. In summary, cannabinoid receptor agonists, which increase the potency of opioids to produce antinociception, did not increase their potency to depress ventilation. Thus, the therapeutic window is greater for opioids when they are combined with cannabinoid receptor agonists, indicating a possible advantage for these drug mixtures in treating pain.
AB - Pain is a serious health problem that is commonly treated with opioids, although the doses of opioids needed to treat pain are often similar to those that decrease respiration. Combining opioids with drugs that relieve pain through non-opioid mechanisms can decrease the doses of opioids needed for analgesia, resulting in an improved therapeutic window, but only if the doses of opioids that decrease respiration are not similarly decreased. Using small doses of opioids to treat pain has the potential to reduce the number of overdoses and deaths. This study investigated whether the cannabinoid receptor agonists Δ9-tetrahydrocannabinol (Δ9-THC) and CP 55,940 modify the ventilatory-depressant effects of morphine and fentanyl in three monkeys. Ventilatory parameters, including minute volume (VE), were monitored with a head plethysmograph. When given alone, morphine (0.032 – 10 mg/kg) and fentanyl (0.00032 – 0.1 mg/kg) dose dependently decreased VE. Doses of Δ9-THC (1 mg/kg) and CP 55,940 (0.01 mg/kg) that enhance the potency of opioids to produce antinociception modestly decreased ventilation when given alone but did not significantly change morphine or fentanyl dose-effect curves. A larger dose of CP 55,940 (0.032 mg/kg) shifted the fentanyl dose-effect curve downward in two monkeys, without significantly changing the morphine dose-effect curve. In summary, cannabinoid receptor agonists, which increase the potency of opioids to produce antinociception, did not increase their potency to depress ventilation. Thus, the therapeutic window is greater for opioids when they are combined with cannabinoid receptor agonists, indicating a possible advantage for these drug mixtures in treating pain.
KW - Cannabinoid receptor agonist
KW - Drug-drug interactions
KW - Respiration
KW - Rhesus monkey
KW - Ventilation
KW - mu opioid receptor agonist
UR - http://www.scopus.com/inward/record.url?scp=85048486688&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85048486688&partnerID=8YFLogxK
U2 - 10.1016/j.ejphar.2018.05.041
DO - 10.1016/j.ejphar.2018.05.041
M3 - Article
C2 - 29807027
AN - SCOPUS:85048486688
SN - 0014-2999
VL - 833
SP - 94
EP - 99
JO - European Journal of Pharmacology
JF - European Journal of Pharmacology
ER -