Unexpected Reaction Pathway for butyrylcholinesterase-catalyzed inactivation of "hunger hormone" ghrelin

Jianzhuang Yao, Yaxia Yuan, Fang Zheng, Chang Guo Zhan

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

Extensive computational modeling and simulations have been carried out, in the present study, to uncover the fundamental reaction pathway for butyrylcholinesterase (BChE)-catalyzed hydrolysis of ghrelin, demonstrating that the acylation process of BChE-catalyzed hydrolysis of ghrelin follows an unprecedented single-step reaction pathway and the single-step acylation process is rate-determining. The free energy barrier (18.8 kcal/mol) calculated for the rate-determining step is reasonably close to the experimentally-derived free energy barrier (∼19.4 kcal/mol), suggesting that the obtained mechanistic insights are reasonable. The single-step reaction pathway for the acylation is remarkably different from the well-known two-step acylation reaction pathway for numerous ester hydrolysis reactions catalyzed by a serine esterase. This is the first time demonstrating that a single-step reaction pathway is possible for an ester hydrolysis reaction catalyzed by a serine esterase and, therefore, one no longer can simply assume that the acylation process must follow the well-known two-step reaction pathway.

Original languageEnglish (US)
Article number22322
JournalScientific reports
Volume6
DOIs
StatePublished - 2016
Externally publishedYes

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Unexpected Reaction Pathway for butyrylcholinesterase-catalyzed inactivation of "hunger hormone" ghrelin'. Together they form a unique fingerprint.

Cite this