TY - JOUR
T1 - Tumor infiltrating B-cells are increased in prostate cancer tissue
AU - Woo, Jason R.
AU - Liss, Michael A.
AU - Muldong, Michelle T.
AU - Palazzi, Kerrin
AU - Strasner, Amy
AU - Ammirante, Massimo
AU - Varki, Nissi
AU - Shabaik, Ahmed
AU - Howell, Stephen
AU - Kane, Christopher J.
AU - Karin, Michael
AU - Jamieson, Christina A.M.
N1 - Funding Information:
Funding support was from CTI Pfizer UCSD grant (PI: M. Karin), NCI grant (PI: M. Karin), UCSD Department of Surgery support for UCSD Urologic Oncology database (PI: C.J. Kane), Start-Up funding, UCSD Dept of Surgery and UCSD Moores Cancer Center (PI: C.A.M. Jamieson). We especially thank Laarni Gapuz, Lab Manager, UCSD Moores Cancer Center Histology Core, and Robbin Newell, Manager, Histopathology Core, Sanford-Burnham La Jolla, CA.
PY - 2014/1/30
Y1 - 2014/1/30
N2 - Background: The presence of increased B-cell tumor infiltrating lymphocytes (TILs) was seen in mouse prostate cancer (PCa) but has not been fully documented in human PCa. We, therefore, investigated the density of infiltrating B cells within human PCa utilizing a quantitative computational method. Methods: Archived radical prostatectomy specimens from 53 patients with known clinical outcome and D'Amico risk category were obtained and immunohistochemically (IHC) stained for the B cell marker, CD20. Slides were reviewed by a genitourinary pathologist who manually delineated the tumoral regions of PCa. Slides were digitally scanned and a computer algorithm quantified the area of CD20 stained B-cells as a measure of B cell density within the outlined regions of prostate cancer (intra-tumoral region), versus extra-tumoral prostate tissue. Correlations were analyzed between B-cell density and demographic and clinical variables, including D'Amico risk groups and disease recurrence. Results: For the entire cohort, the mean intra-tumoral B cell density was higher (3.22 SE = 0.29) than in the extra-tumoral region of each prostatectomy section (2.24, SE = 0.19) (paired t test; P < 0.001). When analyzed according to D'Amico risk group, the intra-tumoral B cell infiltration in low risk (0.0377 vs. 0.0246; p = 0.151) and intermediate risk (0.0260 vs. 0.0214; p = 0.579) patient prostatectomy specimens did not show significantly more B-cells within the PCa tumor. However, patient specimens from the high-risk group (0.0301 vs. 0.0197; p < 0.001) and from those who eventually had PCa recurrence or progression (0.0343 vs. 0.0246; p = 0.019) did show significantly more intra-tumoral CD20+ B-cell staining. Extent of B-cell infiltration in the prostatectomy specimens did not correlate with any other clinical parameters. Conclusions: Our study shows that higher B-cell infiltration was present within the intra-tumoral PCa regions compared to the extra-tumoral benign prostate tissue regions in prostatectomy sections. For this study we developed a new method to measure B-cells using computer-assisted digitized image analysis. Accurate, consistent quantitation of B-cells in prostatectomy specimens is essential for future clinical trials evaluating the effect of B cell ablating antibodies. The interaction of B-cells and PCa may serve as the basis for new therapeutic targets.
AB - Background: The presence of increased B-cell tumor infiltrating lymphocytes (TILs) was seen in mouse prostate cancer (PCa) but has not been fully documented in human PCa. We, therefore, investigated the density of infiltrating B cells within human PCa utilizing a quantitative computational method. Methods: Archived radical prostatectomy specimens from 53 patients with known clinical outcome and D'Amico risk category were obtained and immunohistochemically (IHC) stained for the B cell marker, CD20. Slides were reviewed by a genitourinary pathologist who manually delineated the tumoral regions of PCa. Slides were digitally scanned and a computer algorithm quantified the area of CD20 stained B-cells as a measure of B cell density within the outlined regions of prostate cancer (intra-tumoral region), versus extra-tumoral prostate tissue. Correlations were analyzed between B-cell density and demographic and clinical variables, including D'Amico risk groups and disease recurrence. Results: For the entire cohort, the mean intra-tumoral B cell density was higher (3.22 SE = 0.29) than in the extra-tumoral region of each prostatectomy section (2.24, SE = 0.19) (paired t test; P < 0.001). When analyzed according to D'Amico risk group, the intra-tumoral B cell infiltration in low risk (0.0377 vs. 0.0246; p = 0.151) and intermediate risk (0.0260 vs. 0.0214; p = 0.579) patient prostatectomy specimens did not show significantly more B-cells within the PCa tumor. However, patient specimens from the high-risk group (0.0301 vs. 0.0197; p < 0.001) and from those who eventually had PCa recurrence or progression (0.0343 vs. 0.0246; p = 0.019) did show significantly more intra-tumoral CD20+ B-cell staining. Extent of B-cell infiltration in the prostatectomy specimens did not correlate with any other clinical parameters. Conclusions: Our study shows that higher B-cell infiltration was present within the intra-tumoral PCa regions compared to the extra-tumoral benign prostate tissue regions in prostatectomy sections. For this study we developed a new method to measure B-cells using computer-assisted digitized image analysis. Accurate, consistent quantitation of B-cells in prostatectomy specimens is essential for future clinical trials evaluating the effect of B cell ablating antibodies. The interaction of B-cells and PCa may serve as the basis for new therapeutic targets.
KW - B-cells
KW - CD20
KW - CRPC: castrate-resistant prostate cancer
KW - D'Amico risk stratification
KW - Digital IHC image analysis
KW - Immunohistochemistry
KW - Prostatectomy
KW - TIL: tumor infiltrating lymphocyte
UR - http://www.scopus.com/inward/record.url?scp=84893203731&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84893203731&partnerID=8YFLogxK
U2 - 10.1186/1479-5876-12-30
DO - 10.1186/1479-5876-12-30
M3 - Article
C2 - 24475900
AN - SCOPUS:84893203731
SN - 1479-5876
VL - 12
JO - Journal of Translational Medicine
JF - Journal of Translational Medicine
IS - 1
M1 - 30
ER -