Transplants of NGF-secreting fibroblasts restore stimulus-evoked activity in barrel cortex of basal-forebrain-lesioned rats

Omid Rahimi, Sharon L. Juliano

Research output: Contribution to journalArticlepeer-review

24 Scopus citations

Abstract

Cholinergic nuclei in the basal forebrain supply the cerebral cortex with acetylcholine (ACh). Depletion of cholinergic fibers following basal forebrain lesion results in reduced stimulus-evoked functional activity in rat barrel cortex in response to whisker stimulation. We showed previously that exogenous delivery of nerve growth factor (NGF) to the lateral ventricle restores reduced functional activity toward normal despite persistent reductions in conical cholinergic activity. Gene transfer of therapeutic peptides using genetically engineered cells allows for localized and biological delivery of compounds to the CNS, circumventing systemic administration or repetitive invasive surgery. In this study, we grafted genetically engineered fibroblasts that secrete NGF (NGF+) into three CNS loci of rats with unilateral basal forebrain lesions, along with control fibroblasts (NGF-) that did not secrete NGF. Only NGF+ fibroblasts grafted into ACh-depleted somatosensory cortex resulted in improvement of functional activity following cholinergic depletion. NGF+ fibroblast transplants into the lateral ventricle or basal forebrain did not improve functional activity nor did NGF- fibroblasts in any site. Similar to our previous experiments using intraventricular NGF injections, despite improvements in functional activity, the affected barrel cortex remained depleted of acetylcholinesterase-stained fibers following insertion of NGF+ fibroblasts. These data support the idea that NGF can act directly on the cerebral cortex following reductions in cholinergic innervation. The mechanism of NGF action is illusive, however, since the presence of its high-affinity receptor, trkA, in the cerebral cortex is controversial.

Original languageEnglish (US)
Pages (from-to)2081-2096
Number of pages16
JournalJournal of neurophysiology
Volume86
Issue number4
DOIs
StatePublished - 2001
Externally publishedYes

ASJC Scopus subject areas

  • General Neuroscience
  • Physiology

Fingerprint

Dive into the research topics of 'Transplants of NGF-secreting fibroblasts restore stimulus-evoked activity in barrel cortex of basal-forebrain-lesioned rats'. Together they form a unique fingerprint.

Cite this