Transcriptional and posttranscriptional control of tyrosine hydroxylase gene expression during persistent stimulation of pituitary adenylate cyclase- activating polypeptide receptors on PC12 cells: Regulation by protein kinase A-dependent and protein kinase A-independent pathways

James Corbitt, Jeevalatha Vivekananda, Shou Shu Wang, John R Strong

Research output: Contribution to journalArticle

40 Citations (Scopus)

Abstract

Pituitary adenylate cyclase-activating polypeptide (PACAP) stimulates catecholamine release and biosynthesis in sympathetic postganglionic cells. Moreover, PACAP receptor activation in cultured adrenal chromaffin and superior cervical ganglion cells has been reported to increase the expression of the gene coding for tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis. However, the relative contribution of transcriptional and posttranscriptional mechanisms to the effects of PACAP on TH gene expression has not been evaluated. Therefore, in this study we compared the temporal effects of PACAP on TH gene transcription with the duration of its effects on TH mRNA levels. We had previously shown that vasoactive intestinal polypeptide, peptide histidine isoleucine, and secretin, peptides closely related to PACAP, induce TH gene expression through a cyclic AMP (cAMP)-dependent pathway. Therefore, using a mutant PC12 cell line deficient in cAMP-dependent protein kinase II (PKA), we also evaluated the role of the cAMP pathway in the effect of PACAP on TH gene expression. Continuous treatment of wild-type PC12 cells with pACAP (1 nM) increased TH mRNA levels maximally by 12 hand maintained TH mRNA at near maximal levels for at least 2 days. In contrast, the rate of TH gene transcription, as measured by a nuclear run-on assay, was maximal by 1 h and returned to basal levels by 3 h. The fact that a new steady-state level of TH mRNA was achieved and maintained for days in the absence of a sustained increase in TH gene transcription supports the involvement of posttranscriptional mechanisms. Removal of PACAP after 12 h, a time at which TH gene transcription was at basal levels, resulted in a subsequent return of TH mRNA to unstimulated levels within 36 h. Thus, continuous PACAP stimulation is required to maintain sustained increases in TH mRNA levels in the absence of a sustained elevation of transcription. To examine the role of the cAMP pathway in these effects, we compared the effects of PACAP in wild- type PC12 cells and in a mutant PC12 cell line (A126-1B2) that is deficient in PKA. PACAP failed to stimulate either TH mRNA levels or TH gene transcription in the mutant cells. In contrast to the effects of PACAP, dexamethasone increased TH mRNA levels by the same magnitude in both cell lines. It is noteworthy that stimulation of the PKA-deficient mutant cells with a combination of PACAP and dexamethasone (1 μM) produced a synergistic increase in TH mRNA levels, which was nearly twice that induced by dexamethasone stimulation alone. This synergistic effect was not transcriptionally mediated. The effect of the combined treatment on TH gene transcription was identical to the effect of dexamethasone alone. Taken together, these data indicate that PACAP regulates TH gene expression through a transcriptional mechanism requiring an intact cAMP pathway and through posttranscriptional mechanisms under the control of a cAMP-independent pathway(s).

Original languageEnglish (US)
Pages (from-to)478-486
Number of pages9
JournalJournal of Neurochemistry
Volume71
Issue number2
StatePublished - Aug 1998

Fingerprint

Pituitary Adenylate Cyclase-Activating Polypeptide Receptors
PC12 Cells
Tyrosine 3-Monooxygenase
Cyclic AMP-Dependent Protein Kinases
Gene expression
Pituitary Adenylate Cyclase-Activating Polypeptide
Gene Expression
Transcription
Messenger RNA
Genes
Cyclic AMP
Dexamethasone
Vasoactive Intestinal Peptide
Biosynthesis
Cells
Cell Line
Protein Kinases
Catecholamines
Peptide PHI

Keywords

  • Gene transcription
  • MRNA stability
  • Pituitary adenylate cyclase-activating polypeptide (PACAP)
  • Tyrosine hydroxylase
  • Tyrosine hydroxylase mRNA

ASJC Scopus subject areas

  • Biochemistry
  • Cellular and Molecular Neuroscience

Cite this

@article{07feae2f2e984c2db674156162b71dfd,
title = "Transcriptional and posttranscriptional control of tyrosine hydroxylase gene expression during persistent stimulation of pituitary adenylate cyclase- activating polypeptide receptors on PC12 cells: Regulation by protein kinase A-dependent and protein kinase A-independent pathways",
abstract = "Pituitary adenylate cyclase-activating polypeptide (PACAP) stimulates catecholamine release and biosynthesis in sympathetic postganglionic cells. Moreover, PACAP receptor activation in cultured adrenal chromaffin and superior cervical ganglion cells has been reported to increase the expression of the gene coding for tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis. However, the relative contribution of transcriptional and posttranscriptional mechanisms to the effects of PACAP on TH gene expression has not been evaluated. Therefore, in this study we compared the temporal effects of PACAP on TH gene transcription with the duration of its effects on TH mRNA levels. We had previously shown that vasoactive intestinal polypeptide, peptide histidine isoleucine, and secretin, peptides closely related to PACAP, induce TH gene expression through a cyclic AMP (cAMP)-dependent pathway. Therefore, using a mutant PC12 cell line deficient in cAMP-dependent protein kinase II (PKA), we also evaluated the role of the cAMP pathway in the effect of PACAP on TH gene expression. Continuous treatment of wild-type PC12 cells with pACAP (1 nM) increased TH mRNA levels maximally by 12 hand maintained TH mRNA at near maximal levels for at least 2 days. In contrast, the rate of TH gene transcription, as measured by a nuclear run-on assay, was maximal by 1 h and returned to basal levels by 3 h. The fact that a new steady-state level of TH mRNA was achieved and maintained for days in the absence of a sustained increase in TH gene transcription supports the involvement of posttranscriptional mechanisms. Removal of PACAP after 12 h, a time at which TH gene transcription was at basal levels, resulted in a subsequent return of TH mRNA to unstimulated levels within 36 h. Thus, continuous PACAP stimulation is required to maintain sustained increases in TH mRNA levels in the absence of a sustained elevation of transcription. To examine the role of the cAMP pathway in these effects, we compared the effects of PACAP in wild- type PC12 cells and in a mutant PC12 cell line (A126-1B2) that is deficient in PKA. PACAP failed to stimulate either TH mRNA levels or TH gene transcription in the mutant cells. In contrast to the effects of PACAP, dexamethasone increased TH mRNA levels by the same magnitude in both cell lines. It is noteworthy that stimulation of the PKA-deficient mutant cells with a combination of PACAP and dexamethasone (1 μM) produced a synergistic increase in TH mRNA levels, which was nearly twice that induced by dexamethasone stimulation alone. This synergistic effect was not transcriptionally mediated. The effect of the combined treatment on TH gene transcription was identical to the effect of dexamethasone alone. Taken together, these data indicate that PACAP regulates TH gene expression through a transcriptional mechanism requiring an intact cAMP pathway and through posttranscriptional mechanisms under the control of a cAMP-independent pathway(s).",
keywords = "Gene transcription, MRNA stability, Pituitary adenylate cyclase-activating polypeptide (PACAP), Tyrosine hydroxylase, Tyrosine hydroxylase mRNA",
author = "James Corbitt and Jeevalatha Vivekananda and Wang, {Shou Shu} and Strong, {John R}",
year = "1998",
month = "8",
language = "English (US)",
volume = "71",
pages = "478--486",
journal = "Journal of Neurochemistry",
issn = "0022-3042",
publisher = "Wiley-Blackwell",
number = "2",

}

TY - JOUR

T1 - Transcriptional and posttranscriptional control of tyrosine hydroxylase gene expression during persistent stimulation of pituitary adenylate cyclase- activating polypeptide receptors on PC12 cells

T2 - Regulation by protein kinase A-dependent and protein kinase A-independent pathways

AU - Corbitt, James

AU - Vivekananda, Jeevalatha

AU - Wang, Shou Shu

AU - Strong, John R

PY - 1998/8

Y1 - 1998/8

N2 - Pituitary adenylate cyclase-activating polypeptide (PACAP) stimulates catecholamine release and biosynthesis in sympathetic postganglionic cells. Moreover, PACAP receptor activation in cultured adrenal chromaffin and superior cervical ganglion cells has been reported to increase the expression of the gene coding for tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis. However, the relative contribution of transcriptional and posttranscriptional mechanisms to the effects of PACAP on TH gene expression has not been evaluated. Therefore, in this study we compared the temporal effects of PACAP on TH gene transcription with the duration of its effects on TH mRNA levels. We had previously shown that vasoactive intestinal polypeptide, peptide histidine isoleucine, and secretin, peptides closely related to PACAP, induce TH gene expression through a cyclic AMP (cAMP)-dependent pathway. Therefore, using a mutant PC12 cell line deficient in cAMP-dependent protein kinase II (PKA), we also evaluated the role of the cAMP pathway in the effect of PACAP on TH gene expression. Continuous treatment of wild-type PC12 cells with pACAP (1 nM) increased TH mRNA levels maximally by 12 hand maintained TH mRNA at near maximal levels for at least 2 days. In contrast, the rate of TH gene transcription, as measured by a nuclear run-on assay, was maximal by 1 h and returned to basal levels by 3 h. The fact that a new steady-state level of TH mRNA was achieved and maintained for days in the absence of a sustained increase in TH gene transcription supports the involvement of posttranscriptional mechanisms. Removal of PACAP after 12 h, a time at which TH gene transcription was at basal levels, resulted in a subsequent return of TH mRNA to unstimulated levels within 36 h. Thus, continuous PACAP stimulation is required to maintain sustained increases in TH mRNA levels in the absence of a sustained elevation of transcription. To examine the role of the cAMP pathway in these effects, we compared the effects of PACAP in wild- type PC12 cells and in a mutant PC12 cell line (A126-1B2) that is deficient in PKA. PACAP failed to stimulate either TH mRNA levels or TH gene transcription in the mutant cells. In contrast to the effects of PACAP, dexamethasone increased TH mRNA levels by the same magnitude in both cell lines. It is noteworthy that stimulation of the PKA-deficient mutant cells with a combination of PACAP and dexamethasone (1 μM) produced a synergistic increase in TH mRNA levels, which was nearly twice that induced by dexamethasone stimulation alone. This synergistic effect was not transcriptionally mediated. The effect of the combined treatment on TH gene transcription was identical to the effect of dexamethasone alone. Taken together, these data indicate that PACAP regulates TH gene expression through a transcriptional mechanism requiring an intact cAMP pathway and through posttranscriptional mechanisms under the control of a cAMP-independent pathway(s).

AB - Pituitary adenylate cyclase-activating polypeptide (PACAP) stimulates catecholamine release and biosynthesis in sympathetic postganglionic cells. Moreover, PACAP receptor activation in cultured adrenal chromaffin and superior cervical ganglion cells has been reported to increase the expression of the gene coding for tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis. However, the relative contribution of transcriptional and posttranscriptional mechanisms to the effects of PACAP on TH gene expression has not been evaluated. Therefore, in this study we compared the temporal effects of PACAP on TH gene transcription with the duration of its effects on TH mRNA levels. We had previously shown that vasoactive intestinal polypeptide, peptide histidine isoleucine, and secretin, peptides closely related to PACAP, induce TH gene expression through a cyclic AMP (cAMP)-dependent pathway. Therefore, using a mutant PC12 cell line deficient in cAMP-dependent protein kinase II (PKA), we also evaluated the role of the cAMP pathway in the effect of PACAP on TH gene expression. Continuous treatment of wild-type PC12 cells with pACAP (1 nM) increased TH mRNA levels maximally by 12 hand maintained TH mRNA at near maximal levels for at least 2 days. In contrast, the rate of TH gene transcription, as measured by a nuclear run-on assay, was maximal by 1 h and returned to basal levels by 3 h. The fact that a new steady-state level of TH mRNA was achieved and maintained for days in the absence of a sustained increase in TH gene transcription supports the involvement of posttranscriptional mechanisms. Removal of PACAP after 12 h, a time at which TH gene transcription was at basal levels, resulted in a subsequent return of TH mRNA to unstimulated levels within 36 h. Thus, continuous PACAP stimulation is required to maintain sustained increases in TH mRNA levels in the absence of a sustained elevation of transcription. To examine the role of the cAMP pathway in these effects, we compared the effects of PACAP in wild- type PC12 cells and in a mutant PC12 cell line (A126-1B2) that is deficient in PKA. PACAP failed to stimulate either TH mRNA levels or TH gene transcription in the mutant cells. In contrast to the effects of PACAP, dexamethasone increased TH mRNA levels by the same magnitude in both cell lines. It is noteworthy that stimulation of the PKA-deficient mutant cells with a combination of PACAP and dexamethasone (1 μM) produced a synergistic increase in TH mRNA levels, which was nearly twice that induced by dexamethasone stimulation alone. This synergistic effect was not transcriptionally mediated. The effect of the combined treatment on TH gene transcription was identical to the effect of dexamethasone alone. Taken together, these data indicate that PACAP regulates TH gene expression through a transcriptional mechanism requiring an intact cAMP pathway and through posttranscriptional mechanisms under the control of a cAMP-independent pathway(s).

KW - Gene transcription

KW - MRNA stability

KW - Pituitary adenylate cyclase-activating polypeptide (PACAP)

KW - Tyrosine hydroxylase

KW - Tyrosine hydroxylase mRNA

UR - http://www.scopus.com/inward/record.url?scp=0031784630&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0031784630&partnerID=8YFLogxK

M3 - Article

C2 - 9681437

AN - SCOPUS:0031784630

VL - 71

SP - 478

EP - 486

JO - Journal of Neurochemistry

JF - Journal of Neurochemistry

SN - 0022-3042

IS - 2

ER -