TY - JOUR
T1 - Toothbrush abrasivity in a long-term simulation on human dentin depends on brushing mode and bristle arrangement
AU - Bizhang, Mozhgan
AU - Schmidt, Ilka
AU - Chun, Yong Hee Patricia
AU - Arnold, Wolfgang H.
AU - Zimmer, Stefan
N1 - Publisher Copyright:
© 2017 Bizhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Copyright:
Copyright 2017 Elsevier B.V., All rights reserved.
PY - 2017/2
Y1 - 2017/2
N2 - Objective The aim of this study was to evaluate the susceptibility of dentin to brushing abrasion using four different toothbrushes (rotating-oscillating, sonic and two types of manual toothbrushes) with the same brushing forces. Methods Dentin samples (n = 72) were selected from 72 impacted third molars. Half of the surface of dentin samples was covered with an adhesive tape, creating a protected and a freely exposed area in the same specimen. Brushing was performed with either a: sonic (Sonicare PowerUp, Philips GmbH, Hamburg, Germany), b: oscillating-rotating (Oral B Vitality Precisions Clean, Procter & Gamble, Schwalbach am Taunus, Germany) or two different manual toothbrushes c: flat trim brush head toothbrush (Dr. Best: Original, Glaxo-Smith-Kline, Bühl, Germany) and d: rippled-shaped brush head toothbrush (Blend-a-Dent, Complete V-Interdental, Blend-a-med, Schwalbach, Germany) in a custom made automatic brushing machine. The brushing force was set to 2 N and a whitening toothpaste (RDA = 150) was used. The simulation period was performed over a calculated period to mimic a brushing behavior of two times a day brushing for eight years and six months. Dentin loss was quantitatively determined by profilometry and statistically analyzed by Wilcoxon and Mann-Whitney-U Test (p < 0.05). Results The mean (standard deviation) surface loss was 21.03 (±1.26) μm for the sonic toothbrush, 15.71 (±0.85) μm for the oscillating-rotating toothbrush, 6.13 (±1.24) μm for the manual toothbrush with flat trim brush head and 2.50 (±0.43) μm for the manual toothbrush with rippled-shaped brush head. Differences between all groups were statistically significant at p<0.05. Conclusion Using the same brushing force and a highly abrasive toothpaste, manual toothbrushes are significantly less abrasive compared to power toothbrushes for an 8.5-year simulation.
AB - Objective The aim of this study was to evaluate the susceptibility of dentin to brushing abrasion using four different toothbrushes (rotating-oscillating, sonic and two types of manual toothbrushes) with the same brushing forces. Methods Dentin samples (n = 72) were selected from 72 impacted third molars. Half of the surface of dentin samples was covered with an adhesive tape, creating a protected and a freely exposed area in the same specimen. Brushing was performed with either a: sonic (Sonicare PowerUp, Philips GmbH, Hamburg, Germany), b: oscillating-rotating (Oral B Vitality Precisions Clean, Procter & Gamble, Schwalbach am Taunus, Germany) or two different manual toothbrushes c: flat trim brush head toothbrush (Dr. Best: Original, Glaxo-Smith-Kline, Bühl, Germany) and d: rippled-shaped brush head toothbrush (Blend-a-Dent, Complete V-Interdental, Blend-a-med, Schwalbach, Germany) in a custom made automatic brushing machine. The brushing force was set to 2 N and a whitening toothpaste (RDA = 150) was used. The simulation period was performed over a calculated period to mimic a brushing behavior of two times a day brushing for eight years and six months. Dentin loss was quantitatively determined by profilometry and statistically analyzed by Wilcoxon and Mann-Whitney-U Test (p < 0.05). Results The mean (standard deviation) surface loss was 21.03 (±1.26) μm for the sonic toothbrush, 15.71 (±0.85) μm for the oscillating-rotating toothbrush, 6.13 (±1.24) μm for the manual toothbrush with flat trim brush head and 2.50 (±0.43) μm for the manual toothbrush with rippled-shaped brush head. Differences between all groups were statistically significant at p<0.05. Conclusion Using the same brushing force and a highly abrasive toothpaste, manual toothbrushes are significantly less abrasive compared to power toothbrushes for an 8.5-year simulation.
UR - http://www.scopus.com/inward/record.url?scp=85013679438&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85013679438&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0172060
DO - 10.1371/journal.pone.0172060
M3 - Article
C2 - 28222156
AN - SCOPUS:85013679438
VL - 12
JO - PLoS One
JF - PLoS One
SN - 1932-6203
IS - 2
M1 - e0172060
ER -