Thy-1 antigen expression by cells in the osteoblast lineage

Xiao Dong Chen, He Ying Qian, Lynn Neff, Kazuhito Satomura, Mark C. Horowitz

Research output: Contribution to journalArticlepeer-review

71 Scopus citations

Abstract

Identification of surface markers involved in osteoblast differentiation provides a method to isolate osteoblasts at various stages of maturation. In this study, we examined expression of the T lymphocyte differentiation antigen, Thy-1, by osteoblastic cells from different species. Murine skeletal progenitor, neonatal calvarial, and adult bone cells (ABCs) were selected to represent osteoblasts at distinct stages of maturation. Flow cytometric analysis showed that Thy-1 expression was undetectable on the progenitor cells (mouse limb bud clones 14 and 17), appeared on calvarial cells (45%+), and was decreased on ABCs (< 10%+). Thy-1 was also detected in situ on osteoblastic cells in mouse calvariae. Thy-1 mRNA expression correlated with cell surface expression. Antigen expression was markedly increased during the cells' proliferative phase in culture. Furthermore, examination of primary rat and human osteoblast-like cells revealed that significant levels of Thy- 1 were also expressed on those cells derived from subconfluent culture. This study indicates that osteoblasts express Thy-1 antigen and that its expression is maximal at their earliest stage of maturation, during the proliferative phase, and then declines as the cells mature. In a role similar to the one it plays in the hematopoietic system, Thy-1 antigen may be useful as a differentiation marker in following the development of the osteoblast.

Original languageEnglish (US)
Pages (from-to)362-375
Number of pages14
JournalJournal of Bone and Mineral Research
Volume14
Issue number3
DOIs
StatePublished - 1999
Externally publishedYes

ASJC Scopus subject areas

  • Endocrinology, Diabetes and Metabolism
  • Orthopedics and Sports Medicine

Fingerprint

Dive into the research topics of 'Thy-1 antigen expression by cells in the osteoblast lineage'. Together they form a unique fingerprint.

Cite this