Abstract
A high calorie diet (HCD) can impair hippocampal synaptic plasticity and cognitive function in animal models. Mitochondrial thioredoxin 2 (TRX-2) is critical for maintaining intracellular redox status, but whether it can protect against HCD-induced impairment of synaptic plasticity is unknown. We found that levels of TRX-2 are reduced in the hippocampus of wild type mice maintained for 8. months on a HCD, and that the mice on the HCD exhibit impaired hippocampal synaptic plasticity (long-term potentiation at CA1 synapses) and cognitive function (novel object recognition). Transgenic mice overexpressing human TRX-2 (hTRX-2) exhibit increased resistance to diquat-induced oxidative stress in peripheral tissues. However, neither the HCD nor hTRX-2 overexpression affected levels of lipid peroxidation products (F2 isoprostanes) in the hippocampus, and hTRX-2 transgenic mice were not protected against the adverse effects of the HCD on hippocampal synaptic plasticity and cognitive function. Our findings indicate that TRX-2 overexpression does not mitigate adverse effects of a HCD on synaptic plasticity, and also suggest that oxidative stress may not be a pivotal factor in the impairment of synaptic plasticity and cognitive function caused by HCDs.
Original language | English (US) |
---|---|
Pages (from-to) | 126-132 |
Number of pages | 7 |
Journal | Experimental Neurology |
Volume | 275 |
DOIs | |
State | Published - Jan 1 2016 |
Keywords
- High calorie diet
- Hippocampus
- Lipid peroxidation
- Mitochondria
- Oxidative stress
- Synaptic plasticity
- Thioredoxin
ASJC Scopus subject areas
- Neurology
- Developmental Neuroscience