TY - JOUR
T1 - The orphan nuclear receptors NURR1 and NGFI-B modulate aromatase gene expression in ovarian granulosa cells
T2 - A possible mechanism for repression of aromatase expression upon luteinizing hormone surge
AU - Wu, Yimin
AU - Ghosh, Sagar
AU - Nishi, Yoshihiro
AU - Yanase, Toshihiko
AU - Nawata, Hajime
AU - Hu, Yanfen
N1 - Copyright:
Copyright 2008 Elsevier B.V., All rights reserved.
PY - 2005/1
Y1 - 2005/1
N2 - Ovarian granulosa cells play pivotal roles in many aspects of ovary functions including folliculogenesis and steroidogenesis. In response to FSH and LH, the elevation of intracellular cAMP level in granulosa cells leads to activation of multiple ovarian genes. Here, we report findings from a genome-wide study of the cAMP-responsive gene expression profiles in a human granulosa-like tumor cell line, KGN. The study identified 140 genes that are either activated or repressed by 2-fold or greater after stimulation by the adenylyl cyclase activator forskolin. The induction patterns of some cAMP-responsive genes were further analyzed by quantitative real-time PCR. Consistent with previous observations, the LH-responsive genes, such as the nuclear receptor 4A subfamily (NURR1, NGFI-B, and NOR-1), were rapidly but transiently induced, whereas the FSH-responsive gene CYP19 encoding aromatase was induced in a delayed fashion. Interestingly, ectopic expression of NURR1 or NGFI-B severely attenuated the cAMP-responsive activation of the ovary-specific aromatase promoter. Reduction of the endogenous NURR1 or NGFI-B by small interfering RNA significantly elevated aromatase gene expression. The cis-elements responsible for NURR1/NGFI-B-mediated repression were mapped to the minimal aromatase promoter sequence that confers camp responsiveness. Furthermore, the DNA-binding domain of NURR1 was required for the repression. Taken together, these results strongly suggest a causal relationship between the rapid decline of aromatase mRNA and induction of nuclear receptor subfamily 4A expression, which concomitantly occur upon LH surge at the later stages of ovarian follicular development.
AB - Ovarian granulosa cells play pivotal roles in many aspects of ovary functions including folliculogenesis and steroidogenesis. In response to FSH and LH, the elevation of intracellular cAMP level in granulosa cells leads to activation of multiple ovarian genes. Here, we report findings from a genome-wide study of the cAMP-responsive gene expression profiles in a human granulosa-like tumor cell line, KGN. The study identified 140 genes that are either activated or repressed by 2-fold or greater after stimulation by the adenylyl cyclase activator forskolin. The induction patterns of some cAMP-responsive genes were further analyzed by quantitative real-time PCR. Consistent with previous observations, the LH-responsive genes, such as the nuclear receptor 4A subfamily (NURR1, NGFI-B, and NOR-1), were rapidly but transiently induced, whereas the FSH-responsive gene CYP19 encoding aromatase was induced in a delayed fashion. Interestingly, ectopic expression of NURR1 or NGFI-B severely attenuated the cAMP-responsive activation of the ovary-specific aromatase promoter. Reduction of the endogenous NURR1 or NGFI-B by small interfering RNA significantly elevated aromatase gene expression. The cis-elements responsible for NURR1/NGFI-B-mediated repression were mapped to the minimal aromatase promoter sequence that confers camp responsiveness. Furthermore, the DNA-binding domain of NURR1 was required for the repression. Taken together, these results strongly suggest a causal relationship between the rapid decline of aromatase mRNA and induction of nuclear receptor subfamily 4A expression, which concomitantly occur upon LH surge at the later stages of ovarian follicular development.
UR - http://www.scopus.com/inward/record.url?scp=11144244304&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=11144244304&partnerID=8YFLogxK
U2 - 10.1210/en.2004-0889
DO - 10.1210/en.2004-0889
M3 - Article
C2 - 15486232
AN - SCOPUS:11144244304
VL - 146
SP - 237
EP - 246
JO - Endocrinology
JF - Endocrinology
SN - 0013-7227
IS - 1
ER -