Abstract
Introduction: More than one-fourth of U.S. women are overweight; more than one-third are obese. Maternal obesity has been linked to an increased incidence of stillbirths, fetal macrosomia, fetal intrauterine growth restriction and pre-eclampsia. The placenta plays a key role in the nutrients and oxygen supply to the fetus. The data about structural changes in the placental villous membrane (VM), a major component of the feto-maternal nutrient and oxygen exchange barrier, during obesity are sparse and inconsistent. Our objective was to evaluate the morphometric changes in the placental exchange barrier in a baboon model of obesity. Materials and methods: The previously described baboon model of maternal obesity was studied. We compared 4 obese to 4 non-obese baboons. Placental stereology with the use of transmission electron microscopy was performed to estimate VM oxygen diffusing capacities and morphometry. Results: The specific placental oxygen diffusing capacities per unit of fetal weight were similar in baboons and humans. Maternal leptin concentrations correlated negatively with placental basement membrane thickness (r = -0.78, p < 0.05), while fetal leptin levels correlated negatively with endothelial thickness of fetal capillaries (r = -0.78, p < 0.05). The total and specific villous membrane oxygen diffusing capacities were not different between the two groups. Conclusion: To the best of our knowledge this is the first report of placental oxygen diffusing capacities and placental ultrastructural changes in a baboon model of obesity. Previously reported placental inflammation in maternal obesity is not associated with changes in the VM diffusing capacities and ultrastructure.
Original language | English (US) |
---|---|
Pages (from-to) | 845-851 |
Number of pages | 7 |
Journal | Placenta |
Volume | 32 |
Issue number | 11 |
DOIs | |
State | Published - Nov 2011 |
Externally published | Yes |
Keywords
- Leptin
- Morphometry
- Obesity
- Oxygen diffusing capasity
- Placenta
ASJC Scopus subject areas
- Reproductive Medicine
- Obstetrics and Gynecology
- Developmental Biology