TY - JOUR
T1 - The metabolome-wide signature of major depressive disorder
AU - Mood Disorder Precision Medicine Consortium
AU - Jansen, Rick
AU - Milaneschi, Yuri
AU - Schranner, Daniela
AU - Kastenmuller, Gabi
AU - Arnold, Matthias
AU - Han, Xianlin
AU - Dunlop, Boadie W.
AU - Rush, A. John
AU - Kaddurah-Daouk, Rima
AU - Penninx, Brenda W.J.H.
N1 - Publisher Copyright:
© The Author(s), under exclusive licence to Springer Nature Limited 2024.
PY - 2024/12
Y1 - 2024/12
N2 - Major Depressive Disorder (MDD) is a common, frequently chronic condition characterized by substantial molecular alterations and pathway dysregulations. Single metabolite and targeted metabolomics platforms have revealed several metabolic alterations in depression, including energy metabolism, neurotransmission, and lipid metabolism. More comprehensive coverage of the metabolome is needed to further specify metabolic dysregulations in depression and reveal previously untargeted mechanisms. Here, we measured 820 metabolites using the metabolome-wide Metabolon platform in 2770 subjects from a large Dutch clinical cohort with extensive clinical phenotyping (1101 current MDD, 868 remitted MDD, 801 healthy controls) at baseline, which were repeated in 1805 subjects at 6-year follow up (327 current MDD, 1045 remitted MDD, 433 healthy controls). MDD diagnosis was based on DSM-IV psychiatric interviews. Depression severity was measured with the Inventory of Depressive Symptomatology Self-report. Associations between metabolites and MDD status and depression severity were assessed at baseline and at 6-year follow-up. At baseline, 139 and 126 metabolites were associated with current MDD status and depression severity, respectively, with 79 overlapping metabolites. Adding body mass index and lipid-lowering medication to the models changed results only marginally. Among the overlapping metabolites, 34 were confirmed in internal replication analyses using 6-year follow-up data. Downregulated metabolites were enriched with long-chain monounsaturated (P = 6.7e−07) and saturated (P = 3.2e−05) fatty acids; upregulated metabolites were enriched with lysophospholipids (P = 3.4e−4). Mendelian randomization analyses using genetic instruments for metabolites (N = 14,000) and MDD (N = 800,000) showed that genetically predicted higher levels of the lysophospholipid 1-linoleoyl-GPE (18:2) were associated with greater risk of depression. The identified metabolome-wide profile of depression indicated altered lipid metabolism with downregulation of long-chain fatty acids and upregulation of lysophospholipids, for which causal involvement was suggested using genetic tools. This metabolomics signature offers a window on depression pathophysiology and a potential access point for the development of novel therapeutic approaches.
AB - Major Depressive Disorder (MDD) is a common, frequently chronic condition characterized by substantial molecular alterations and pathway dysregulations. Single metabolite and targeted metabolomics platforms have revealed several metabolic alterations in depression, including energy metabolism, neurotransmission, and lipid metabolism. More comprehensive coverage of the metabolome is needed to further specify metabolic dysregulations in depression and reveal previously untargeted mechanisms. Here, we measured 820 metabolites using the metabolome-wide Metabolon platform in 2770 subjects from a large Dutch clinical cohort with extensive clinical phenotyping (1101 current MDD, 868 remitted MDD, 801 healthy controls) at baseline, which were repeated in 1805 subjects at 6-year follow up (327 current MDD, 1045 remitted MDD, 433 healthy controls). MDD diagnosis was based on DSM-IV psychiatric interviews. Depression severity was measured with the Inventory of Depressive Symptomatology Self-report. Associations between metabolites and MDD status and depression severity were assessed at baseline and at 6-year follow-up. At baseline, 139 and 126 metabolites were associated with current MDD status and depression severity, respectively, with 79 overlapping metabolites. Adding body mass index and lipid-lowering medication to the models changed results only marginally. Among the overlapping metabolites, 34 were confirmed in internal replication analyses using 6-year follow-up data. Downregulated metabolites were enriched with long-chain monounsaturated (P = 6.7e−07) and saturated (P = 3.2e−05) fatty acids; upregulated metabolites were enriched with lysophospholipids (P = 3.4e−4). Mendelian randomization analyses using genetic instruments for metabolites (N = 14,000) and MDD (N = 800,000) showed that genetically predicted higher levels of the lysophospholipid 1-linoleoyl-GPE (18:2) were associated with greater risk of depression. The identified metabolome-wide profile of depression indicated altered lipid metabolism with downregulation of long-chain fatty acids and upregulation of lysophospholipids, for which causal involvement was suggested using genetic tools. This metabolomics signature offers a window on depression pathophysiology and a potential access point for the development of novel therapeutic approaches.
UR - http://www.scopus.com/inward/record.url?scp=85195315593&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85195315593&partnerID=8YFLogxK
U2 - 10.1038/s41380-024-02613-6
DO - 10.1038/s41380-024-02613-6
M3 - Article
C2 - 38849517
AN - SCOPUS:85195315593
SN - 1359-4184
VL - 29
SP - 3722
EP - 3733
JO - Molecular psychiatry
JF - Molecular psychiatry
IS - 12
ER -