The effect of graded doses of insulin on total glucose uptake, glucose oxidation, and glucose storage in man

D. Thiebaud, E. Jacot, R. A. DeFronzo, E. Maeder, E. Jequier, J. P. Felber

Research output: Contribution to journalArticlepeer-review

267 Scopus citations

Abstract

The dose-response relationship between plasma insulin concentration and total glucose uptake, glucose oxidation, and glucose storage was examined in 22 healthy young volunteers by employing the euglycemic insulin clamp technique in combination with indirect calorimetry. Insulin was infused at five rates to achieve steady-state hyperinsulinemic plateaus of 62 ± 4, 103 ± 5, 170 ± 10, 423 ± 16, and 1132 ± 47 μU/ml. With increasing plasma insulin concentrations within the physiologic range, there was a linear increase in glucose uptake with a half maximally effective insulin concentration of 72 μU/ml. Glucose uptake by all tissues of the body reached 80% of its maximum value (12.6 mg/kg.min) at a plasma insulin concentration of ~200 μU/ml. In contrast to total glucose uptake, glucose oxidation plateaued more quickly, achieved a maximum rate of only 4.0 mg/kg.min, and displayed a lower half maximally effective insulin concentration of 40 μU/ml. The increase in glucose uptake with progressively increasing plasma insulin levels was primarily the result of an increase in glucose storage, with a half maximally effective insulin concentration of 105 μU/ml and maximum rate of 8.7 mg/kg.min. Glucose storage represented over 60-70% of total glucose uptake at all insulin concentrations. After achieving maximum rates of insulin-mediated glucose uptake (plasma insulin concentration = 1132 μU/ml), hyperglycemia (+125 mg/dl) was superimposed on hyperinsulinemia to further enhance glucose transport. Under these conditions, total glucose uptake (32.5 mg/kg.min, P < 0.001) was markedly augmented but no significant increase in glucose oxidation was observed. These results indicate a true saturation of the glucose oxidation pathway. With progressively increasing doses of insulin, the glucose storage represents the major route of glucose disposal.

Original languageEnglish (US)
Pages (from-to)957-963
Number of pages7
JournalUnknown Journal
Volume31
Issue number11
DOIs
StatePublished - Jan 1 1982
Externally publishedYes

ASJC Scopus subject areas

  • Internal Medicine
  • Endocrinology, Diabetes and Metabolism

Fingerprint Dive into the research topics of 'The effect of graded doses of insulin on total glucose uptake, glucose oxidation, and glucose storage in man'. Together they form a unique fingerprint.

Cite this