TY - JOUR
T1 - The discriminative stimulus effects of epibatidine in C57BL/6J mice
AU - De Moura, Fernando B.
AU - Hiranita, Takato
AU - McMahon, Lance R.
N1 - Publisher Copyright:
© 2020 Lippincott Williams and Wilkins. All rights reserved.
PY - 2020/9/1
Y1 - 2020/9/1
N2 - The α4β2∗ nicotinic acetylcholine receptor (nAChR) subtypes are targeted for the development of smoking cessation aids, and the use of drug discrimination in mice provides a robust screening tool for the identification of drugs acting through nAChRs. Here, we established that the α4β2∗ nAChR agonist epibatidine can function as a discriminative stimulus in mice. Male C57BL/6J mice discriminated epibatidine (0.0032 mg/kg, subcutaneously) and were tested with agonists varying in selectivity and efficacy for α4β2∗ nAChRs. The discriminative stimulus effects of epibatidine were characterized with the nonselective, noncompetitive nicotinic antagonist mecamylamine, with the selective β2-substype-containing nAChR antagonist dihydro-β-erythroidine hydrobromide (DHβE), and the α7 antagonist methyllycaconitine (MLA). Nicotine (0.32-1.0 mg/kg, subcutaneously), the partial nAChR agonist cytisine (1.0-5.6 mg/kg, subcutaneously), and the α7 nAChR agonist N-[(3R)-1-azabicyclo[2.2.2]oct-3-yl]-4-chlorobenzamide (10-56 mg/kg, intraperitoneally) produced no more than 33% epibatidine-appropriate responding. The partial α4β2∗ nAChR agonists varenicline and 2′-fluoro-3′-(4-nitro-phenyl)deschloroepibatidine produced 61 and 69% epibatidine-appropriate responding, respectively. DHβE and mecamylamine, but not MLA, significantly antagonized the discriminative stimulus effects of epibatidine. These results show that epibatidine may be trained as a discriminative stimulus in mice and has utility in elucidating the in-vivo pharmacology of α4β2∗ nAChR ligands.
AB - The α4β2∗ nicotinic acetylcholine receptor (nAChR) subtypes are targeted for the development of smoking cessation aids, and the use of drug discrimination in mice provides a robust screening tool for the identification of drugs acting through nAChRs. Here, we established that the α4β2∗ nAChR agonist epibatidine can function as a discriminative stimulus in mice. Male C57BL/6J mice discriminated epibatidine (0.0032 mg/kg, subcutaneously) and were tested with agonists varying in selectivity and efficacy for α4β2∗ nAChRs. The discriminative stimulus effects of epibatidine were characterized with the nonselective, noncompetitive nicotinic antagonist mecamylamine, with the selective β2-substype-containing nAChR antagonist dihydro-β-erythroidine hydrobromide (DHβE), and the α7 antagonist methyllycaconitine (MLA). Nicotine (0.32-1.0 mg/kg, subcutaneously), the partial nAChR agonist cytisine (1.0-5.6 mg/kg, subcutaneously), and the α7 nAChR agonist N-[(3R)-1-azabicyclo[2.2.2]oct-3-yl]-4-chlorobenzamide (10-56 mg/kg, intraperitoneally) produced no more than 33% epibatidine-appropriate responding. The partial α4β2∗ nAChR agonists varenicline and 2′-fluoro-3′-(4-nitro-phenyl)deschloroepibatidine produced 61 and 69% epibatidine-appropriate responding, respectively. DHβE and mecamylamine, but not MLA, significantly antagonized the discriminative stimulus effects of epibatidine. These results show that epibatidine may be trained as a discriminative stimulus in mice and has utility in elucidating the in-vivo pharmacology of α4β2∗ nAChR ligands.
KW - C57BL/6J mice
KW - alpha4beta2
KW - discriminative stimulus effects
KW - epibatidine
KW - nicotine
UR - http://www.scopus.com/inward/record.url?scp=85089300982&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85089300982&partnerID=8YFLogxK
U2 - 10.1097/FBP.0000000000000555
DO - 10.1097/FBP.0000000000000555
M3 - Article
C2 - 32209809
AN - SCOPUS:85089300982
SN - 0955-8810
VL - 31
SP - 565
EP - 573
JO - Behavioural pharmacology
JF - Behavioural pharmacology
IS - 6
ER -