TY - JOUR
T1 - Tetrameric oligomerization mediates transcriptional repression by the BRCA1-dependent Kruppel-associated box-zinc finger protein ZBRK1
AU - Tan, Wei
AU - Kim, Seokjoong
AU - Boyer, Thomas G.
PY - 2004/12/31
Y1 - 2004/12/31
N2 - The Kruppel-associated box (KRAB)-zinc finger protein ZBRK1 has been implicated in the transcriptional regulation of DNA damage-response genes that function in cell growth control and survival. Recently, we described a novel BRCA1-dependent C-terminal transcriptional repression domain (CTRD) within ZBRK1, the mode of repression of which is functionally distinguishable from that of the N-terminal KRAB repression domain within ZBRK1. The identification of BRCA1 binding-competent but repression-defective CTRD mutants further revealed that BRCA1 binding is necessary, but not sufficient, for ZBRK1 CTRD function. During an unbiased search for possible co-regulators of the CTRD, we identified ZBRK1 itself, suggesting that ZBRK1 can oligomerize through its CTRD. Herein we explore the physical and functional requirements for ZBRK1 oligomerization in ZBRK1-directed transcriptional repression. Protein interaction analyses confirmed that ZBRK1 can homo-oligomerize both in vitro and in vivo and further mapped the ZBRK1 oligomerization domain to the CTRD C terminus. Biochemical analyses, including protein cross-linking and gel filtration chromatography, revealed that ZBRK1 homo-oligomers exist as tetramers in solution. Functionally, ZBRK1 oligomerization facilitates ZBRK1-directed transcriptional repression through ZBRK1 response elements; requirements for oligomerization-dependent repression include the ZBRK1 CTRD and KRAB repression domains but not the DNA binding activity of ZBRK1. These observations suggest that higher order oligomers of ZBRK1 may assemble on target ZBRK1 response elements through both protein-DNA and CTRD-dependent protein-protein interactions. These findings thus reveal an unanticipated dual function for ZBRK1 in both DNA binding-dependent and -independent modes of transcriptional repression and further establish the CTRD as a novel protein interaction surface responsible for directing homotypic and heterotypic interactions necessary for ZBRK1-directed transcriptional repression.
AB - The Kruppel-associated box (KRAB)-zinc finger protein ZBRK1 has been implicated in the transcriptional regulation of DNA damage-response genes that function in cell growth control and survival. Recently, we described a novel BRCA1-dependent C-terminal transcriptional repression domain (CTRD) within ZBRK1, the mode of repression of which is functionally distinguishable from that of the N-terminal KRAB repression domain within ZBRK1. The identification of BRCA1 binding-competent but repression-defective CTRD mutants further revealed that BRCA1 binding is necessary, but not sufficient, for ZBRK1 CTRD function. During an unbiased search for possible co-regulators of the CTRD, we identified ZBRK1 itself, suggesting that ZBRK1 can oligomerize through its CTRD. Herein we explore the physical and functional requirements for ZBRK1 oligomerization in ZBRK1-directed transcriptional repression. Protein interaction analyses confirmed that ZBRK1 can homo-oligomerize both in vitro and in vivo and further mapped the ZBRK1 oligomerization domain to the CTRD C terminus. Biochemical analyses, including protein cross-linking and gel filtration chromatography, revealed that ZBRK1 homo-oligomers exist as tetramers in solution. Functionally, ZBRK1 oligomerization facilitates ZBRK1-directed transcriptional repression through ZBRK1 response elements; requirements for oligomerization-dependent repression include the ZBRK1 CTRD and KRAB repression domains but not the DNA binding activity of ZBRK1. These observations suggest that higher order oligomers of ZBRK1 may assemble on target ZBRK1 response elements through both protein-DNA and CTRD-dependent protein-protein interactions. These findings thus reveal an unanticipated dual function for ZBRK1 in both DNA binding-dependent and -independent modes of transcriptional repression and further establish the CTRD as a novel protein interaction surface responsible for directing homotypic and heterotypic interactions necessary for ZBRK1-directed transcriptional repression.
UR - http://www.scopus.com/inward/record.url?scp=11244292008&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=11244292008&partnerID=8YFLogxK
U2 - 10.1074/jbc.M410926200
DO - 10.1074/jbc.M410926200
M3 - Article
C2 - 15496401
AN - SCOPUS:11244292008
SN - 0021-9258
VL - 279
SP - 55153
EP - 55160
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 53
ER -