Targeted deletion of a yeast enolase structural gene. Identification and isolation of yeast enolase isozymes.

L. McAlister, M. J. Holland

Research output: Contribution to journalArticle

103 Scopus citations

Abstract

Yeast contain two nontandemly repeated enolase structural genes which have been isolated on bacterial plasmids designated peno46 and peno8 (Holland, M. J., Holland, J. P., Thill, G. P., and Jackson, K. A. (1981) J. Biol. Chem. 256, 1385-1395). In order to study the expression of the enolase genes in vivo, the resident enolase gene in a wild type yeast strain corresponding to the gene isolated on peno46 was replaced with a deletion, constructed in vitro, which lacks 90% of the enolase coding sequences. Three catalytically active enolases are resolved differ DEAE-Sephadex chromatography of wild type cellular extracts. As expected, a single form of enolase was resolved from extracts of the mutant cell. Immunological and electrophoretic analyses of the multiple forms of enolase confirm that two enolase genes are expressed in wild type cells and that isozymes are formed in the cell by random assortment of the two polypeptides into three active enolase dimers. The yeast enolase loci have been designated ENO1 and ENO2. The deletion mutant lacks the enolase 1 polypeptide confirming that this polypeptide is encoded by the gene isolated on peno46. The intracellular steady state concentrations of the two polypeptides are dependent on the carbon source used to propagate the cells. Log phase cells grown on glucose contain 20-fold more enolase 2 polypeptide than enolase 1 polypeptide, whereas cells grown on ethanol or glycerol plus lactate contain similar amounts of the two polypeptides. The 20-fold higher than in cells grown on the nonfermentable carbon sources. In vitro translation of total cellular RNA suggests that the steady state concentrations of the two enolase mRNAs in cells grown on different carbon sources are proportional to the steady state concentrations of the respective enolase polypeptides.

Original languageEnglish (US)
Pages (from-to)7181-7188
Number of pages8
JournalJournal of Biological Chemistry
Volume257
Issue number12
StatePublished - Jun 25 1982

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint Dive into the research topics of 'Targeted deletion of a yeast enolase structural gene. Identification and isolation of yeast enolase isozymes.'. Together they form a unique fingerprint.

  • Cite this