Target specificity, in vivo pharmacokinetics, and efficacy of the putative STAT3 inhibitor LY5 in osteosarcoma, Ewing’s sarcoma, and rhabdomyosarcoma

Peter Y. Yu, Heather L. Gardner, Ryan Roberts, Hakan Cam, Seethalakshmi Hariharan, Ling Ren, Amy K. Leblanc, Hui Xiao, Jiayuh Lin, Denis C. Guttridge, Xiaokui Mo, Chad E. Bennett, Christopher C. Coss, Yonghua Ling, Mitch A. Phelps, Peter Houghton, Cheryl A. London

Research output: Contribution to journalArticlepeer-review

8 Scopus citations


Background: STAT3 is a transcription factor involved in cytokine and receptor kinase signal transduction that is aberrantly activated in a variety of sarcomas, promoting metastasis and chemotherapy resistance. The purpose of this work was to develop and test a novel putative STAT3 inhibitor, LY5. Methods and findings: An in silico fragment-based drug design strategy was used to create LY5, a small molecule inhibitor that blocks the STAT3 SH2 domain phosphotyrosine binding site, inhibiting homodimerization. LY5 was evaluated in vitro demonstrating good biologic activity against rhabdomyosarcoma, osteosarcoma and Ewing’s sarcoma cell lines at high nanomolar/low micromolar concentrations, as well as specific inhibition of STAT3 phosphorylation without effects on other STAT3 family members. LY5 exhibited excellent oral bioavailability in both mice and healthy dogs, and drug absorption was enhanced in the fasted state with tolerable dosing in mice at 40 mg/kg BID. However, RNAi-mediated knockdown of STAT3 did not phenocopy the biologic effects of LY5 in sarcoma cell lines. Moreover, concentrations needed to inhibit ex vivo metastasis growth using the PuMA assay were significantly higher than those needed to inhibit STAT3 phosphorylation in vitro. Lastly, LY5 treatment did not inhibit the growth of sarcoma xenografts or prevent pulmonary metastasis in mice. Conclusions: LY5 is a novel small molecule inhibitor that effectively inhibits STAT3 phosphorylation and cell proliferation at nanomolar concentrations. LY5 demonstrates good oral bioavailability in mice and dogs. However LY5 did not decrease tumor growth in xenograft mouse models and STAT3 knockdown did not induce concordant biologic effects. These data suggest that the anti-cancer effects of LY5 identified in vitro were not mediated through STAT3 inhibition.

Original languageEnglish (US)
Article numbere0181885
JournalPloS one
Issue number7
StatePublished - Jul 2017

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • General


Dive into the research topics of 'Target specificity, in vivo pharmacokinetics, and efficacy of the putative STAT3 inhibitor LY5 in osteosarcoma, Ewing’s sarcoma, and rhabdomyosarcoma'. Together they form a unique fingerprint.

Cite this