Abstract
Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 (KSHV/HHV8) has been etiologically associated with several malignancies including Kaposi's sarcoma and primary effusion lymphoma. Oncogenic viral interferon regulatory factor (vIRF) encoded by KSHV ORF-K9 is a homologue of cellular interferon regulatory factor (IRF), and has been demonstrated to inhibit type I/II interferon signal transduction and transform NIH3T3 cells through the interactions with IRF-1, IRF-3, and CBP/p300 proteins. To counteract vIRF's pathogenic role, we have developed five ribozymes targeting ORF-K9 mRNA to suppress vIRF expression. The vIRF RNA substrates were cleaved up to 80% in a substrate-specific manner in transcript cleavage assays in vitro. In a transient transfection assay, two of the ribozymes efficiently suppressed the expression of vIRF protein measured by dual-color immunofluorescence assay that simultaneously detects the expression of both vIRF protein and ribozyme. Flow cytometry analysis showed that these ribozymes reduced vIRF expression up to 76%. A mutant ribozyme had no cleavage activity in vitro, but exhibited antisense effect in vivo. These results suggest that the ribozymes may provide a new approach for functional knockout of vIRF gene, and are potential candidates of antiviral therapy for KSHV-related malignancies.
Original language | English (US) |
---|---|
Pages (from-to) | 285-293 |
Number of pages | 9 |
Journal | Cancer Gene Therapy |
Volume | 8 |
Issue number | 4 |
DOIs | |
State | Published - 2001 |
Keywords
- KSHV
- Kaposi's sarcoma-associated herpesvirus
- Oncogene
- Ribozyme
- vIRF
ASJC Scopus subject areas
- Molecular Medicine
- Molecular Biology
- Cancer Research