Abstract
Telomerase is a ribonucleoprotein complex essential for maintenance of telomere DNA at linear chromosome ends. The catalytic core of Tetrahymena telomerase comprises a ternary complex of telomerase RNA (TER), telomerase reverse transcriptase (TERT), and the essential La family protein p65. NMR and crystal structures of p65 C-terminal domain and its complex with stem IV of TER reveal that RNA recognition is achieved by a combination of single- and double-stranded RNA binding, which induces a 105° bend in TER. The domain is a cryptic, atypical RNA recognition motif with a disordered C-terminal extension that forms an α helix in the complex necessary for hierarchical assembly of TERT with p65-TER. This work provides the first structural insight into biogenesis and assembly of TER with a telomerase-specific protein. Additionally, our studies define a structurally homologous domain (xRRM) in genuine La and LARP7 proteins and suggest a general mode of RNA binding for biogenesis of their diverse RNA targets.
Original language | English (US) |
---|---|
Pages (from-to) | 16-26 |
Number of pages | 11 |
Journal | Molecular Cell |
Volume | 47 |
Issue number | 1 |
DOIs | |
State | Published - Jul 13 2012 |
Externally published | Yes |
ASJC Scopus subject areas
- Molecular Biology
- Cell Biology