STING activation in alveolar macrophages and group 2 innate lymphoid cells suppresses IL-33-driven type 2 immunopathology

Li She, Gema D. Barrera, Liping Yan, Hamad H. Alanazi, Edward G. Brooks, Peter H. Dube, Yilun Sun, Hong Zan, Daniel P. Chupp, Nu Zhang, Xin Zhang, Yong Liu, Xiao Dong Li

Research output: Contribution to journalArticlepeer-review

17 Scopus citations

Abstract

2′3′-cGAMP is known as a nonclassical second messenger and small immune modulator that possesses potent antitumor and antiviral activities via inducing the stimulator of IFN genes-mediated (STING-mediated) signaling pathway. However, its function in regulating type 2 immune responses remains unknown. Therefore, we sought to determine a role of STING activation by 2′3′-cGAMP in type 2 inflammatory reactions in multiple mouse models of eosinophilic asthma. We discovered that 2′3′-cGAMP administration strongly attenuated type 2 lung immunopathology and airway hyperreactivity induced by IL-33 and a fungal allergen, Aspergillus flavus. Mechanistically, upon the respiratory delivery, 2′3′-cGAMP was mainly internalized by alveolar macrophages, in which it activated the STING/IFN regulatory factor 3/type I IFN signaling axis to induce the production of inhibitory factors containing IFN-α, which blocked the IL-33-mediated activation of group 2 innate lymphoid (ILC2) cells in vivo. We further demonstrated that 2′3′-cGAMP directly suppressed the proliferation and function of both human and mouse ILC2 cells in vitro. Taken together, our findings suggest that STING activation by 2′3′-cGAMP in alveolar macrophages and ILC2 cells can negatively regulate type 2 immune responses, implying that the respiratory delivery of 2′3′-cGAMP might be further developed as an alternative strategy for treating type 2 immunopathologic diseases such as eosinophilic asthma.

Original languageEnglish (US)
Article numbere143509
JournalJCI Insight
Volume6
Issue number3
DOIs
StatePublished - Feb 8 2021

ASJC Scopus subject areas

  • General Medicine

Fingerprint

Dive into the research topics of 'STING activation in alveolar macrophages and group 2 innate lymphoid cells suppresses IL-33-driven type 2 immunopathology'. Together they form a unique fingerprint.

Cite this