Steady-State Kinetic Mechanism of Rat Tyrosine Hydroxylase

Paid F. Fitzpatrick

Research output: Contribution to journalArticle

99 Scopus citations

Abstract

The steady-state kinetic mechanism for rat tyrosine hydroxylase has been determined by using recombinant enzyme expressed in insect tissue culture cells. Variation of any two of the three substrates, tyrosine, 6-methyitetrahydropterin, and oxygen, together at nonsaturating concentrations of the third gives a pattern of intersecting iines in a doubie-reciprocai piot. Varying tyrosine and oxygen together results in a rapid equilibrium pattern, whiie the other substrate pairs both fit a sequential mechanism. When tyrosine and 6-methyltetrahydropterin are varied at a fixed ratio at different oxygen concentrations, the intercept replot is linear and the slope replot is nonlinear with a zero intercept, consistent with rapid equilibrium binding of oxygen. All the replots when oxygen is varied in a fixed ratio with either tyrosine or 6-methyltetrahydropterin are nonlinear with finite intercepts. 6-Methyl-7,8-dihydropterin and norepinephrine are competitive inhibitors versus 6-methyltetrahydropterin and noncompetitive inhibitors versus tyrosine. 3-Iodo-tyrosine, a competitive inhibitor versus tyrosine, shows uncompetitive inhibition versus 6-methyltetrahydropterin. At high concentrations, tyrosine is a competitive inhibitor versus 6-methyltetrahydropterin. These results are consistent with an ordered kinetic mechanism with the order of binding being 6-methyltetrahydropterin, oxygen, and tyrosine and with formation of a dead-end enzyme-tyrosine complex. There is no significant primary kinetic isotope effect on the V/K values or on the Vmax value with [3,5-2H2]tyrosine as substrate. No burst of dihydroxyphenylalanine production is seen during the first turnover. These results rule out product release and carbon-hydrogen bond cleavage as rate-limiting steps.

Original languageEnglish (US)
Pages (from-to)3658-3662
Number of pages5
JournalBiochemistry
Volume30
Issue number15
DOIs
StatePublished - Apr 1 1991

ASJC Scopus subject areas

  • Biochemistry

Fingerprint Dive into the research topics of 'Steady-State Kinetic Mechanism of Rat Tyrosine Hydroxylase'. Together they form a unique fingerprint.

  • Cite this