SseA acts as the chaperone for the SseB component of the Salmonella Pathogenicity Island 2 translocon

Daniel V. Zurawski, Murry A. Stein

Research output: Contribution to journalArticlepeer-review

38 Scopus citations


The Salmonella Pathogenicity Island 2 (SPI2) encodes a type III secretion system (TTSS) shown to be critical for adaptation to the intracellular environment within both phagocytic and epithelial cell types. Within SPI2, the Effector region encodes several exported proteins that comprise the SPI2 translocon (SseB, C, D). SseA is the first protein encoded within the Effector region but remains an unclassified factor that is essential for SPI2 function. In the present study, we determined that SseA shares several features with TTSS chaperones: it is small (12.5 kDa), located directly upstream of a TTSS export target (SseB), and contains an amphipathic, C-terminal α-helix. Construction and analysis of a ΔsseA mutant demonstrated that the total amount of SseB is significantly reduced and SPI2 export of SseB to the bacterial surface is prevented. SseB accumulation and export were restored when SseA was provided in trans. Loss of SseA does not cause a generalized defect in SPI2 secretory function as export of SseC, encoded downstream of SseB, still occurs in the δsseA strain. Quantitative PCR indicates that the loss of SseB in AsseA does not occur at the transcriptional level. Co-purification studies demonstrate that SseA directly binds to SseB. Collectively, these results demonstrate that SseA functions as a TTSS chaperone for the SPI2 translocon component, SseB.

Original languageEnglish (US)
Pages (from-to)1341-1351
Number of pages11
JournalMolecular Microbiology
Issue number5
StatePublished - Mar 2003
Externally publishedYes

ASJC Scopus subject areas

  • Microbiology
  • Molecular Biology


Dive into the research topics of 'SseA acts as the chaperone for the SseB component of the Salmonella Pathogenicity Island 2 translocon'. Together they form a unique fingerprint.

Cite this