TY - JOUR
T1 - Serotonin transporter function, but not expression, is dependent on brain-derived neurotrophic factor (BDNF)
T2 - In vivo studies in BDNF-deficient mice
AU - Daws, L. C.
AU - Munn, J. L.
AU - Valdez, M. F.
AU - Frosto-Burke, T.
AU - Hensler, J. G.
PY - 2007/5
Y1 - 2007/5
N2 - In the present study, we used high-speed chronoamperometry to examine serotonin (5-HT) transporter (5-HTT) function in vivo in 2-, 5-, and 10-month-old brain-derived neurotrophic factor (BDNF)+/- mice. The rate of clearance of exogenously applied 5-HT was measured in CA3 region of hippocampus. In 2-month-old mice, the rate of 5-HT clearance did not differ between BDNF+/+ and BDNF+/- mice. In BDNF+/+ mice, 5-HT clearance rate (Tc) increased markedly with age. In contrast, Tc remained relatively static in BDNF+/- mice across 2-, 5-, and 10-month age groups. At 5 months of age, female BDNF+/+ mice had a lower maximal velocity (Vmax) for 5-HT clearance than male BDNF+/+ mice. There was a similar trend in 5-month-old BDNF+/- mice, but this did not reach statistical significance. There was an age-dependent increase in KT value for 5-HT clearance (i.e., decreased in vivo affinity of 5-HTT), but no significant effect of genotype or gender. 5-HTT density, as measured by [3H]cyanoimipramine binding, was not different between BDNF+/+ and BDNF+/- mice, although there was a significant increase in 5-HTT binding with age. The selective 5-HT reuptake inhibitor fluvoxamine (50 and 100 pmol) significantly decreased 5-HT clearance in BDNF+/+ mice, but not in BDNF+/- mice. Our data suggest that the profoundly reduced ability of 5- and 10-month-old BDNF+/- mice to clear 5-HT is not because of a decrease in the total number of 5-HTTs, but may be due to functional deficits in the 5-HTT, e.g., in the machinery/signaling required for insertion of 5-HTTs into the plasma membrane and/or activation of the 5-HTT once it is positioned to take up 5-HT from extracellular fluid.
AB - In the present study, we used high-speed chronoamperometry to examine serotonin (5-HT) transporter (5-HTT) function in vivo in 2-, 5-, and 10-month-old brain-derived neurotrophic factor (BDNF)+/- mice. The rate of clearance of exogenously applied 5-HT was measured in CA3 region of hippocampus. In 2-month-old mice, the rate of 5-HT clearance did not differ between BDNF+/+ and BDNF+/- mice. In BDNF+/+ mice, 5-HT clearance rate (Tc) increased markedly with age. In contrast, Tc remained relatively static in BDNF+/- mice across 2-, 5-, and 10-month age groups. At 5 months of age, female BDNF+/+ mice had a lower maximal velocity (Vmax) for 5-HT clearance than male BDNF+/+ mice. There was a similar trend in 5-month-old BDNF+/- mice, but this did not reach statistical significance. There was an age-dependent increase in KT value for 5-HT clearance (i.e., decreased in vivo affinity of 5-HTT), but no significant effect of genotype or gender. 5-HTT density, as measured by [3H]cyanoimipramine binding, was not different between BDNF+/+ and BDNF+/- mice, although there was a significant increase in 5-HTT binding with age. The selective 5-HT reuptake inhibitor fluvoxamine (50 and 100 pmol) significantly decreased 5-HT clearance in BDNF+/+ mice, but not in BDNF+/- mice. Our data suggest that the profoundly reduced ability of 5- and 10-month-old BDNF+/- mice to clear 5-HT is not because of a decrease in the total number of 5-HTTs, but may be due to functional deficits in the 5-HTT, e.g., in the machinery/signaling required for insertion of 5-HTTs into the plasma membrane and/or activation of the 5-HTT once it is positioned to take up 5-HT from extracellular fluid.
KW - Fluvoxamine
KW - High-speed chronoamperometry
KW - Hippocampus
KW - Quantitative autoradiography
UR - http://www.scopus.com/inward/record.url?scp=34247335399&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34247335399&partnerID=8YFLogxK
U2 - 10.1111/j.1471-4159.2006.04392.x
DO - 10.1111/j.1471-4159.2006.04392.x
M3 - Article
C2 - 17254018
AN - SCOPUS:34247335399
SN - 0022-3042
VL - 101
SP - 641
EP - 651
JO - Journal of neurochemistry
JF - Journal of neurochemistry
IS - 3
ER -