Selective blockade of N-methyl-D-aspartate (NMDA)-induced convulsions by NMDA antagonists and putative glycine antagonists: Relationship with phencyclidine-like behavioral effects

Wouter Koek, F. C. Colpaert

Research output: Contribution to journalArticle

211 Citations (Scopus)

Abstract

Antagonism of N-methyl-D-aspartate (NMDA)-induced convulsions by a variety of drugs was compared with their ability to produce phencyclidine (PCP)-like behavioral effects (locomotion and falling) in mice. Convulsions produced by i.c.v. administration of NMDA were antagonized, at doses that did not block kainate-and quisqualate-induced convulsions, by competitive NMDA antagonists (e.g., CPP and CGS 19755), noncompetitive antagonists (e.g., PCP and MK-801) and also by some putative glycine antagonists (7-chlorokynurenic acid and HA-966). Only the competitive and the noncompetitive NMDA antagonists produced locomotion and falling, and their potencies to do so correlated (r = 0.92) with their relative potencies to antagonize NMDA-induced convulsions. However, the PCP-like behavioral effects produced by the competitive antagonists were of a lesser magnitude than those of the noncompetitive antagonists, and occurred at doses higher than those needed to block NMDA-induced convulsions. The putative glycine antagonists 7-chlorokynurenic acid and HA-966 selectively blocked NMDA-induced convulsions, without producing PCP-like behavioral effects. The extent to which compounds produce PCP-like behavioral effects might depend in part on the specific component of the NMDA receptor complex with which they interact: i.e., the NMDA receptor, the NMDA receptor-associated ion channel or the glycine-sensitive modulatory site.

Original languageEnglish (US)
Pages (from-to)349-357
Number of pages9
JournalJournal of Pharmacology and Experimental Therapeutics
Volume252
Issue number1
StatePublished - 1990
Externally publishedYes

Fingerprint

Phencyclidine
N-Methylaspartate
Glycine
Seizures
N-Methyl-D-Aspartate Receptors
selfotel
Locomotion
Quisqualic Acid
Dizocilpine Maleate
Kainic Acid
Ion Channels
Pharmaceutical Preparations

ASJC Scopus subject areas

  • Pharmacology

Cite this

@article{b2789dc9ba5b4ca2ba62ea4c8a6e6c82,
title = "Selective blockade of N-methyl-D-aspartate (NMDA)-induced convulsions by NMDA antagonists and putative glycine antagonists: Relationship with phencyclidine-like behavioral effects",
abstract = "Antagonism of N-methyl-D-aspartate (NMDA)-induced convulsions by a variety of drugs was compared with their ability to produce phencyclidine (PCP)-like behavioral effects (locomotion and falling) in mice. Convulsions produced by i.c.v. administration of NMDA were antagonized, at doses that did not block kainate-and quisqualate-induced convulsions, by competitive NMDA antagonists (e.g., CPP and CGS 19755), noncompetitive antagonists (e.g., PCP and MK-801) and also by some putative glycine antagonists (7-chlorokynurenic acid and HA-966). Only the competitive and the noncompetitive NMDA antagonists produced locomotion and falling, and their potencies to do so correlated (r = 0.92) with their relative potencies to antagonize NMDA-induced convulsions. However, the PCP-like behavioral effects produced by the competitive antagonists were of a lesser magnitude than those of the noncompetitive antagonists, and occurred at doses higher than those needed to block NMDA-induced convulsions. The putative glycine antagonists 7-chlorokynurenic acid and HA-966 selectively blocked NMDA-induced convulsions, without producing PCP-like behavioral effects. The extent to which compounds produce PCP-like behavioral effects might depend in part on the specific component of the NMDA receptor complex with which they interact: i.e., the NMDA receptor, the NMDA receptor-associated ion channel or the glycine-sensitive modulatory site.",
author = "Wouter Koek and Colpaert, {F. C.}",
year = "1990",
language = "English (US)",
volume = "252",
pages = "349--357",
journal = "Journal of Pharmacology and Experimental Therapeutics",
issn = "0022-3565",
publisher = "American Society for Pharmacology and Experimental Therapeutics",
number = "1",

}

TY - JOUR

T1 - Selective blockade of N-methyl-D-aspartate (NMDA)-induced convulsions by NMDA antagonists and putative glycine antagonists

T2 - Relationship with phencyclidine-like behavioral effects

AU - Koek, Wouter

AU - Colpaert, F. C.

PY - 1990

Y1 - 1990

N2 - Antagonism of N-methyl-D-aspartate (NMDA)-induced convulsions by a variety of drugs was compared with their ability to produce phencyclidine (PCP)-like behavioral effects (locomotion and falling) in mice. Convulsions produced by i.c.v. administration of NMDA were antagonized, at doses that did not block kainate-and quisqualate-induced convulsions, by competitive NMDA antagonists (e.g., CPP and CGS 19755), noncompetitive antagonists (e.g., PCP and MK-801) and also by some putative glycine antagonists (7-chlorokynurenic acid and HA-966). Only the competitive and the noncompetitive NMDA antagonists produced locomotion and falling, and their potencies to do so correlated (r = 0.92) with their relative potencies to antagonize NMDA-induced convulsions. However, the PCP-like behavioral effects produced by the competitive antagonists were of a lesser magnitude than those of the noncompetitive antagonists, and occurred at doses higher than those needed to block NMDA-induced convulsions. The putative glycine antagonists 7-chlorokynurenic acid and HA-966 selectively blocked NMDA-induced convulsions, without producing PCP-like behavioral effects. The extent to which compounds produce PCP-like behavioral effects might depend in part on the specific component of the NMDA receptor complex with which they interact: i.e., the NMDA receptor, the NMDA receptor-associated ion channel or the glycine-sensitive modulatory site.

AB - Antagonism of N-methyl-D-aspartate (NMDA)-induced convulsions by a variety of drugs was compared with their ability to produce phencyclidine (PCP)-like behavioral effects (locomotion and falling) in mice. Convulsions produced by i.c.v. administration of NMDA were antagonized, at doses that did not block kainate-and quisqualate-induced convulsions, by competitive NMDA antagonists (e.g., CPP and CGS 19755), noncompetitive antagonists (e.g., PCP and MK-801) and also by some putative glycine antagonists (7-chlorokynurenic acid and HA-966). Only the competitive and the noncompetitive NMDA antagonists produced locomotion and falling, and their potencies to do so correlated (r = 0.92) with their relative potencies to antagonize NMDA-induced convulsions. However, the PCP-like behavioral effects produced by the competitive antagonists were of a lesser magnitude than those of the noncompetitive antagonists, and occurred at doses higher than those needed to block NMDA-induced convulsions. The putative glycine antagonists 7-chlorokynurenic acid and HA-966 selectively blocked NMDA-induced convulsions, without producing PCP-like behavioral effects. The extent to which compounds produce PCP-like behavioral effects might depend in part on the specific component of the NMDA receptor complex with which they interact: i.e., the NMDA receptor, the NMDA receptor-associated ion channel or the glycine-sensitive modulatory site.

UR - http://www.scopus.com/inward/record.url?scp=0025057540&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0025057540&partnerID=8YFLogxK

M3 - Article

C2 - 2153806

AN - SCOPUS:0025057540

VL - 252

SP - 349

EP - 357

JO - Journal of Pharmacology and Experimental Therapeutics

JF - Journal of Pharmacology and Experimental Therapeutics

SN - 0022-3565

IS - 1

ER -