TY - JOUR
T1 - S-adenosyl-l-homocysteine hydrolase regulates aldosterone-induced Na+ transport
AU - Stockand, James D.
AU - Al-Baldawi, Nabil F.
AU - Al-Khalili, Otor K.
AU - Worrell, Roger T.
AU - Eaton, Douglas C.
PY - 1999/2/5
Y1 - 1999/2/5
N2 - Aldosterone-induced Na+ reabsorption, in part, is regulated by a critical methyl esterification; however, the signal transduction pathway regulating this methylation remains unclear. The A6 cell line was used as a model epithelia to investigate regulation of aldosterone-induced Na+ transport by S-adenosyl-L-homocysteine hydrolase (SAHHase), the only enzyme in vertebrates known to catabolize S-adenosyl-L-homocysteine (SAH), an end product inhibitor of methyl esterification. Sodium reabsorption was decreased within 2 h by 3-deazaadenosine, a competitive inhibitor of SAHHase, with a half inhibitory concentration between 40 and 50 μM. Aldosterone increased SAH catabolism by activating SAHHase. Increased SAH catabolism was associated with a concomitant increase in S-adenosylmethionine catabolism. Moreover, SAH decreased substrate methylation. Antisense oligonucleotide complementary to SAHHase mRNA decreased SAHHase activity and Na+ current by approximately 50%. Overexpression of SAHHase increased SAHHase activity and dependent substrate methyl esterification. Whereas basal Na+ current was not affected by overexpression of SAHHase, aldosterone-induced current in SAHHase- overexpressing cells was significantly potentiated. These results demonstrate that aldosterone induction of SAHHase activity is necessary for a concomitant relief of the methylation reaction from end product inhibition by SAH and the subsequent increase in Na+ reabsorption. Thus, regulation of SAHHase activity is a control point for aldosterone signal transduction, but SAHHase is not an aldosterone-induced protein.
AB - Aldosterone-induced Na+ reabsorption, in part, is regulated by a critical methyl esterification; however, the signal transduction pathway regulating this methylation remains unclear. The A6 cell line was used as a model epithelia to investigate regulation of aldosterone-induced Na+ transport by S-adenosyl-L-homocysteine hydrolase (SAHHase), the only enzyme in vertebrates known to catabolize S-adenosyl-L-homocysteine (SAH), an end product inhibitor of methyl esterification. Sodium reabsorption was decreased within 2 h by 3-deazaadenosine, a competitive inhibitor of SAHHase, with a half inhibitory concentration between 40 and 50 μM. Aldosterone increased SAH catabolism by activating SAHHase. Increased SAH catabolism was associated with a concomitant increase in S-adenosylmethionine catabolism. Moreover, SAH decreased substrate methylation. Antisense oligonucleotide complementary to SAHHase mRNA decreased SAHHase activity and Na+ current by approximately 50%. Overexpression of SAHHase increased SAHHase activity and dependent substrate methyl esterification. Whereas basal Na+ current was not affected by overexpression of SAHHase, aldosterone-induced current in SAHHase- overexpressing cells was significantly potentiated. These results demonstrate that aldosterone induction of SAHHase activity is necessary for a concomitant relief of the methylation reaction from end product inhibition by SAH and the subsequent increase in Na+ reabsorption. Thus, regulation of SAHHase activity is a control point for aldosterone signal transduction, but SAHHase is not an aldosterone-induced protein.
UR - http://www.scopus.com/inward/record.url?scp=0033525192&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0033525192&partnerID=8YFLogxK
U2 - 10.1074/jbc.274.6.3842
DO - 10.1074/jbc.274.6.3842
M3 - Article
C2 - 9920939
AN - SCOPUS:0033525192
SN - 0021-9258
VL - 274
SP - 3842
EP - 3850
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 6
ER -