Abstract
Transcranial magnetic stimulation (TMS) can be used to depolarize neuronal populations in discrete regions of the human cerebral cortex. Once created, these local neuronal activations propogate physiologically to other regions following the neuronal pathways of the brain. Positron-emission tomography (PET) can be used to image TMS-induced brain activations, both local (at the site of stimulation) and remote (via connections). To allow highly precise mapping of human cerebral connectivity, we have developed a fully robotic, image-guided system for imaging and delivering TMS, which can be used during PET or alone. A strategy for accomodating variations in cortical geometry has been developed and validated.
Original language | English (US) |
---|---|
Pages (from-to) | 984 |
Number of pages | 1 |
Journal | Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings |
Volume | 2 |
State | Published - 2002 |
Event | Proceedings of the 2002 IEEE Engineering in Medicine and Biology 24th Annual Conference and the 2002 Fall Meeting of the Biomedical Engineering Society (BMES / EMBS) - Houston, TX, United States Duration: Oct 23 2002 → Oct 26 2002 |
Keywords
- Brain connectivity
- Image guidance
- PET
- Positron emission tomography
- TMS
- Transcranial magnetic stimulation
ASJC Scopus subject areas
- Signal Processing
- Biomedical Engineering
- Computer Vision and Pattern Recognition
- Health Informatics