Rhythmic Melatonin Response of the Syrian Hamster Pineal Gland to Norepinephrine In Vitro and In Vivo

George M. Vaughan, James Lasko, Sandy H. Coggins, Basil A. Pruitt, Arthur D. Mason

Research output: Contribution to journalArticlepeer-review

26 Scopus citations


Norepinephrine (NE, 10−6 M) stimulated melatonin accumulation in the incubation medium of rat (but not Syrian hamster) pineals taken at the end of the light phase. However, NE elevated melatonin accumulation in the medium of pineals taken after 20 min of light exposure of animals of either species at 6 h into the 10‐h dark phase. A dose response to 10−7−10−5 M NE was observed in both the medium and pineals upon incubation of pineals taken from rats at 4 h into the light phase and from hamsters after 20 min light exposure at 6 h into the dark phase. Approximately 95% of the melatonin present was in the medium. The incubation time was 4 h in all cases. Subcutaneous injection of 1 μg/g NE (either at the end of the light phase or after 30 min of light at 6 h into the dark phase) did not stimulate in vivo Syrian hamster pineal melatonin content determined 1 or 2 h after injection, whether the hamsters were placed in light or darkness after the injection. However, after 30 min of light beginning at 6 h into dark, injection of 5 μg/g desipramine (DMI, a blocker of catecholamine uptake into nerve endings) allowed a dramatic hamster pineal melatonin response to additional injection of 1 μg/g NE, observed at 1 and 2 h in light after injection. A small effect of DMI alone was seen. DMI also potentiated the effect of NE (each 10−6 M) on melatonin accumulation in the medium of incubated hamster pineals taken after a short light exposure at night. No significant stimulatory effect of NE and/ or DMI was seen in vivo or in vitro near the middle of the light phase. Measurement of melatonin in the incubation medium is a useful method for studying pineal function. The Syrian hamster pineal has rhythm of sensitivity to NE (sensitivity evident at night) and even at night is protected by neuronal uptake from circulating NE‐induced stimulation of melatonin production. NE appears to be the neurotransmitter for stimulation of pineal melatonin production in the Syrian hamster. The sensitivity rhythm and uptake protection might provide specificity of control of the nightly melatonin signal by reducing the chance of a melatonin response during the day or a response to circulating catecholamines from general sympathetic stimuli.

Original languageEnglish (US)
Pages (from-to)235-249
Number of pages15
JournalJournal of pineal research
Issue number3
StatePublished - Jul 1986


  • desipramine
  • hamster
  • melatonin
  • rat
  • rhythms
  • sympathetic

ASJC Scopus subject areas

  • Endocrinology


Dive into the research topics of 'Rhythmic Melatonin Response of the Syrian Hamster Pineal Gland to Norepinephrine In Vitro and In Vivo'. Together they form a unique fingerprint.

Cite this