Rezafungin (CD101) demonstrates potent in vitro activity against Aspergillus, including azole-resistant Aspergillus fumigatus isolates and cryptic species

Nathan P. Wiederhold, Jeffrey B. Locke, Paul Daruwala, Ken Bartizal

Research output: Contribution to journalArticlepeer-review

62 Scopus citations

Abstract

Background: Rezafungin is an investigational echinocandin under development for the treatment and prevention of invasive fungal infections, with a long half-life in humans (130 h) and potent in vitro activity against Aspergillus spp. Our objective was to further evaluate its activity against Aspergillus fumigatus isolates, including azole-resistant isolates and cryptic Aspergillus spp. Methods: Clinical isolates of Aspergillus were used, including 15 WT and 31 azole-resistant A. fumigatus, 11 Aspergillus lentulus, 5 each of Aspergillus thermomutatus and Aspergillus udagawae and 11 Aspergillus calidoustus. Minimum effective concentrations (MECs) and MICs of rezafungin, caspofungin, micafungin, posaconazole and voriconazole were determined by CLSI M38-A2 broth microdilution. Differences in geometric mean (GM) MEC/MIC values were assessed for significance by ANOVA. Results: Rezafungin GM MECs for A. fumigatus were 0.024 and 0.043 mg/L for WT and azole-resistant isolates, respectively. Rezafungin was also active against cryptic species, including A. lentulus (0.016 mg/L), A. calidoustus (0.044 mg/L), A. thermomutatus (MEC range 0.015–0.25 mg/L) and A. udagawae (0.015–0.03 mg/L). This activity was similar to that of caspofungin and micafungin with the exception of A. calidoustus, against which rezafungin was more potent than caspofungin (GM MEC 0.044 versus 0.468 mg/L; P, 0.0001). Conclusions: Rezafungin demonstrated potent in vitro activity against Aspergillus spp., including azole-resistant A. fumigatus isolates and cryptic species with elevated posaconazole and voriconazole MICs. Additional studies are warranted to determine whether the in vitro activity translates into in vivo efficacy against infections caused by resistant Aspergillus isolates.

Original languageEnglish (US)
Pages (from-to)3063-3067
Number of pages5
JournalJournal of Antimicrobial Chemotherapy
Volume73
Issue number11
DOIs
StatePublished - Nov 1 2018

ASJC Scopus subject areas

  • Microbiology (medical)
  • Infectious Diseases
  • Pharmacology (medical)
  • Pharmacology

Fingerprint

Dive into the research topics of 'Rezafungin (CD101) demonstrates potent in vitro activity against Aspergillus, including azole-resistant Aspergillus fumigatus isolates and cryptic species'. Together they form a unique fingerprint.

Cite this