TY - JOUR
T1 - Resting-state functional connectivity in the baboon model of genetic generalized epilepsy
AU - Salinas, Felipe S.
AU - Szabõ, C. Ákos
N1 - Publisher Copyright:
© 2015 International League Against Epilepsy.
PY - 2015/10/1
Y1 - 2015/10/1
N2 - Objective The baboon provides a natural model of genetic generalized epilepsy (GGE). This study compares the intrinsic connectivity networks of epileptic and healthy control baboons using resting-state functional magnetic resonance imaging (rs-fMRI) and data-driven functional connectivity mapping. Methods Twenty baboons, matched for gender, age, and weight, were classified into two groups (10 epileptic [EPI], 10 control [CTL]) on the basis of scalp electroencephalography (EEG) findings. Each animal underwent one MRI session that acquired one 5-min resting state fMRI scan and one anatomic MRI scan - used for registration and spatial normalization. Using independent component analysis, we identified 14 unique components/networks, which were then used to characterize each group's functional connectivity maps of each brain network. Results The epileptic group demonstrated network-specific differences in functional connectivity when compared to the control animals. The sensitivity and specificity of the two groups' functional connectivity maps differed significantly in the visual, motor, amygdala, insular, and default mode networks. Significant increases were found in the occipital gyri of the epileptic group's functional connectivity map for the default mode, cingulate, intraparietal, motor, visual, amygdala, and thalamic regions. Significance This is the first study using resting-state fMRI to demonstrate intrinsic functional connectivity differences between epileptic and control nonhuman primates. These results are consistent with seed-based GGE studies in humans; however, our use of a data-driven approach expands the scope of functional connectivity mapping to include brain regions/networks comprising the whole brain.
AB - Objective The baboon provides a natural model of genetic generalized epilepsy (GGE). This study compares the intrinsic connectivity networks of epileptic and healthy control baboons using resting-state functional magnetic resonance imaging (rs-fMRI) and data-driven functional connectivity mapping. Methods Twenty baboons, matched for gender, age, and weight, were classified into two groups (10 epileptic [EPI], 10 control [CTL]) on the basis of scalp electroencephalography (EEG) findings. Each animal underwent one MRI session that acquired one 5-min resting state fMRI scan and one anatomic MRI scan - used for registration and spatial normalization. Using independent component analysis, we identified 14 unique components/networks, which were then used to characterize each group's functional connectivity maps of each brain network. Results The epileptic group demonstrated network-specific differences in functional connectivity when compared to the control animals. The sensitivity and specificity of the two groups' functional connectivity maps differed significantly in the visual, motor, amygdala, insular, and default mode networks. Significant increases were found in the occipital gyri of the epileptic group's functional connectivity map for the default mode, cingulate, intraparietal, motor, visual, amygdala, and thalamic regions. Significance This is the first study using resting-state fMRI to demonstrate intrinsic functional connectivity differences between epileptic and control nonhuman primates. These results are consistent with seed-based GGE studies in humans; however, our use of a data-driven approach expands the scope of functional connectivity mapping to include brain regions/networks comprising the whole brain.
KW - Functional connectivity
KW - Genetic generalized epilepsy
KW - Nonhuman primates
KW - Resting-state fMRI
UR - http://www.scopus.com/inward/record.url?scp=84943197531&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84943197531&partnerID=8YFLogxK
U2 - 10.1111/epi.13115
DO - 10.1111/epi.13115
M3 - Article
C2 - 26290449
AN - SCOPUS:84943197531
SN - 0013-9580
VL - 56
SP - 1580
EP - 1589
JO - Epilepsia
JF - Epilepsia
IS - 10
ER -