TY - JOUR
T1 - Regulation of start site usage in the leader exons of the rat insulin-like growth factor-I gene by development, fasting, and diabetes
AU - Adamo, Martin L.
AU - Ben-Hur, Haya
AU - Roberts, Charles T.
AU - LeRoith, Derek
PY - 1991/11
Y1 - 1991/11
N2 - Rat insulin-like growth factor-I (IGF-I) mRNAs with different 5′-untranslated region/prepeptide coding sequences result from transcription initiation in one of two leader exons. While not altering the mature IGF-I coding sequence, these different leaders potentially encode two distinct IGF-I prepeptides, one of 48 amino acids (exon 1) and one of 32 amino acids (exon 2). Within exon 1, transcription initiation is dispersed (i.e. occurs over a ∼350-basepair region), while within exon 2, it is highly localized. A fourth exon 1 start site, residing only approximately 30 basepairs from its 3′ end, is suggested on the basis of RNase protection assays; its use would produce an mRNA encoding a third distinct IGF-I leader peptide of 22 amino acids. We have determined that during postnatal development, and as a result of insulinopenic diabetes and fasting, choice of transcription start sites within exon 1 in the liver is coordinately regulated, i.e. use of all start sites increased during development and decreased in the two catabolic states. Transcription initiation at the single major site within exon 2 was also reduced in diabetes and fasting. Insulin replacement therapy and refeeding restored the levels of all transcripts coordinately. During postnatal development, however, transcripts initiating within exon 2 exhibited a different developmental profile than did exon 1 transcripts, increasing especially at the onset of GHdependent linear growth. In liver, therefore, negative regulation of exon 1 and exon 2 transcription start site usage occurs in catabolic states, while in development, differential regulation of exon 1 and exon 2 transcription start sites occurs.
AB - Rat insulin-like growth factor-I (IGF-I) mRNAs with different 5′-untranslated region/prepeptide coding sequences result from transcription initiation in one of two leader exons. While not altering the mature IGF-I coding sequence, these different leaders potentially encode two distinct IGF-I prepeptides, one of 48 amino acids (exon 1) and one of 32 amino acids (exon 2). Within exon 1, transcription initiation is dispersed (i.e. occurs over a ∼350-basepair region), while within exon 2, it is highly localized. A fourth exon 1 start site, residing only approximately 30 basepairs from its 3′ end, is suggested on the basis of RNase protection assays; its use would produce an mRNA encoding a third distinct IGF-I leader peptide of 22 amino acids. We have determined that during postnatal development, and as a result of insulinopenic diabetes and fasting, choice of transcription start sites within exon 1 in the liver is coordinately regulated, i.e. use of all start sites increased during development and decreased in the two catabolic states. Transcription initiation at the single major site within exon 2 was also reduced in diabetes and fasting. Insulin replacement therapy and refeeding restored the levels of all transcripts coordinately. During postnatal development, however, transcripts initiating within exon 2 exhibited a different developmental profile than did exon 1 transcripts, increasing especially at the onset of GHdependent linear growth. In liver, therefore, negative regulation of exon 1 and exon 2 transcription start site usage occurs in catabolic states, while in development, differential regulation of exon 1 and exon 2 transcription start sites occurs.
UR - http://www.scopus.com/inward/record.url?scp=0025838403&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0025838403&partnerID=8YFLogxK
U2 - 10.1210/mend-5-11-1677
DO - 10.1210/mend-5-11-1677
M3 - Article
C2 - 1779970
AN - SCOPUS:0025838403
SN - 0888-8809
VL - 5
SP - 1677
EP - 1686
JO - Molecular Endocrinology
JF - Molecular Endocrinology
IS - 11
ER -