Regulation of hypothalamic arginine vasopressin messenger ribonucleic acid and pituitary arginine vasopressin content in fetal sheep: Effects of acute tonicity alterations and fetal maturation

X. Zhao, Mark J Nijland, M. G. Ervin, M. G. Ross

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

OBJECTIVE: Fetal arginine vasopressin contributes to fetal and amniotic fluid homeostasis by increasing water resorption in the kidney and, at higher plasma levels, circulatory homeostasis by vasopressor effects. In utero and neonatal exposure of rat pups to prolonged alterations in plasma osmolality may permanently alter (imprint) pituitary arginine vasopressin content and adult responses to osmotic challenges. Our objective was to investigate fetal developmental changes and the impact of maternal dehydration and maternal hyponatremia on fetal pituitary arginine vasopressin content and hypothalamic arginine vasopressin messenger ribonucleic acid expression. STUDY DESIGN: Ten pregnant ewes with singleton fetuses (135 ± 1 day) were chronically prepared with maternal vascular catheters. Ewes were assigned to receive water deprivation (n = 4) [desamino, D-Arg8]-arginine vasopressin-induced plasma hyponatremia (n = 3), or 4 days of observation (n = 3). Three additional pregnant ewes with preterm (110 ± 1 day) singleton fetuses were also included for a study of maturational effects. Daily maternal blood samples were analyzed for determination of plasma arginine vasopressin, electrolytes, and osmolality. After the study protocol, fetuses were operatively delivered, umbilical blood samples obtained, and fetuses put to death for pituitary and hypothalamic tissues. Pituitary arginine vasopressin content was determined by radioimmunoassay, and hypothalamus arginine vasopressin messenger ribonucleic acid expression was detected by Northern blotting. RESULTS: Dehydration significantly (P < .05) increased, and hyponatremia significantly decreased maternal plasma sodium concentration compared with controls. Fetal plasma sodium concentration significantly changed in parallel with maternal values (dehydration: 139 ± 1 to 150 ± 1 mEq/L; hyponatremia: 138 ± 1 to 128 ± 5 mEq/L). Fetal hypothalamic arginine vasopressin messenger ribonucleic acid expression and pituitary content did not change in relation to these relatively acute alterations in plasma tonicity. However, among all animals, arginine vasopressin messenger ribonucleic acid expression was significantly negatively correlated with pituitary arginine vasopressin content [r2 = 0.563; P = .02). Arginine vasopressin messenger ribonucleic acid expression was significantly lower in both preterm and near-term fetuses (P < .05) than that in the maternal ewe, although pituitary arginine vasopressin content (in micrograms per milligram of protein) was significantly greater in preterm fetuses (P < .01, vs maternal; P < .05, vs near term). CONCLUSIONS: The significant inverse relation between arginine vasopressin content and arginine vasopressin messenger ribonucleic acid suggests a dynamic arginine vasopressin synthesis-content feedback relationship is functional in the near-term fetus. Although relatively acute periods of maternal hypertonicity or hypotonicity do not alter fetal pituitary arginine vasopressin content or hypothalamic arginine vasopressin messenger ribonucleic acid expression, longer-term plasma tonicity alterations may potentially have an impact on the fetal arginine vasopressin hypothalamic-pituitary axis.

Original languageEnglish (US)
Pages (from-to)899-905
Number of pages7
JournalAmerican Journal of Obstetrics and Gynecology
Volume179
Issue number4
DOIs
StatePublished - 1998
Externally publishedYes

Fingerprint

Arginine Vasopressin
Sheep
RNA
Mothers
Fetus
Hyponatremia
Dehydration
Osmolar Concentration
Homeostasis
Sodium
Water Deprivation
Umbilicus
Vascular Access Devices

Keywords

  • Dehydration
  • Fetal maturation
  • Hyponatremia
  • Pituitary arginine vasopressin content
  • Sheep hypothalamic arginine vasopressin messenger ribonucleic acid

ASJC Scopus subject areas

  • Medicine(all)
  • Obstetrics and Gynecology

Cite this

@article{af1e6afd38074a88a47d1a55de31e13c,
title = "Regulation of hypothalamic arginine vasopressin messenger ribonucleic acid and pituitary arginine vasopressin content in fetal sheep: Effects of acute tonicity alterations and fetal maturation",
abstract = "OBJECTIVE: Fetal arginine vasopressin contributes to fetal and amniotic fluid homeostasis by increasing water resorption in the kidney and, at higher plasma levels, circulatory homeostasis by vasopressor effects. In utero and neonatal exposure of rat pups to prolonged alterations in plasma osmolality may permanently alter (imprint) pituitary arginine vasopressin content and adult responses to osmotic challenges. Our objective was to investigate fetal developmental changes and the impact of maternal dehydration and maternal hyponatremia on fetal pituitary arginine vasopressin content and hypothalamic arginine vasopressin messenger ribonucleic acid expression. STUDY DESIGN: Ten pregnant ewes with singleton fetuses (135 ± 1 day) were chronically prepared with maternal vascular catheters. Ewes were assigned to receive water deprivation (n = 4) [desamino, D-Arg8]-arginine vasopressin-induced plasma hyponatremia (n = 3), or 4 days of observation (n = 3). Three additional pregnant ewes with preterm (110 ± 1 day) singleton fetuses were also included for a study of maturational effects. Daily maternal blood samples were analyzed for determination of plasma arginine vasopressin, electrolytes, and osmolality. After the study protocol, fetuses were operatively delivered, umbilical blood samples obtained, and fetuses put to death for pituitary and hypothalamic tissues. Pituitary arginine vasopressin content was determined by radioimmunoassay, and hypothalamus arginine vasopressin messenger ribonucleic acid expression was detected by Northern blotting. RESULTS: Dehydration significantly (P < .05) increased, and hyponatremia significantly decreased maternal plasma sodium concentration compared with controls. Fetal plasma sodium concentration significantly changed in parallel with maternal values (dehydration: 139 ± 1 to 150 ± 1 mEq/L; hyponatremia: 138 ± 1 to 128 ± 5 mEq/L). Fetal hypothalamic arginine vasopressin messenger ribonucleic acid expression and pituitary content did not change in relation to these relatively acute alterations in plasma tonicity. However, among all animals, arginine vasopressin messenger ribonucleic acid expression was significantly negatively correlated with pituitary arginine vasopressin content [r2 = 0.563; P = .02). Arginine vasopressin messenger ribonucleic acid expression was significantly lower in both preterm and near-term fetuses (P < .05) than that in the maternal ewe, although pituitary arginine vasopressin content (in micrograms per milligram of protein) was significantly greater in preterm fetuses (P < .01, vs maternal; P < .05, vs near term). CONCLUSIONS: The significant inverse relation between arginine vasopressin content and arginine vasopressin messenger ribonucleic acid suggests a dynamic arginine vasopressin synthesis-content feedback relationship is functional in the near-term fetus. Although relatively acute periods of maternal hypertonicity or hypotonicity do not alter fetal pituitary arginine vasopressin content or hypothalamic arginine vasopressin messenger ribonucleic acid expression, longer-term plasma tonicity alterations may potentially have an impact on the fetal arginine vasopressin hypothalamic-pituitary axis.",
keywords = "Dehydration, Fetal maturation, Hyponatremia, Pituitary arginine vasopressin content, Sheep hypothalamic arginine vasopressin messenger ribonucleic acid",
author = "X. Zhao and Nijland, {Mark J} and Ervin, {M. G.} and Ross, {M. G.}",
year = "1998",
doi = "10.1016/S0002-9378(98)70186-3",
language = "English (US)",
volume = "179",
pages = "899--905",
journal = "American Journal of Obstetrics and Gynecology",
issn = "0002-9378",
publisher = "Mosby Inc.",
number = "4",

}

TY - JOUR

T1 - Regulation of hypothalamic arginine vasopressin messenger ribonucleic acid and pituitary arginine vasopressin content in fetal sheep

T2 - Effects of acute tonicity alterations and fetal maturation

AU - Zhao, X.

AU - Nijland, Mark J

AU - Ervin, M. G.

AU - Ross, M. G.

PY - 1998

Y1 - 1998

N2 - OBJECTIVE: Fetal arginine vasopressin contributes to fetal and amniotic fluid homeostasis by increasing water resorption in the kidney and, at higher plasma levels, circulatory homeostasis by vasopressor effects. In utero and neonatal exposure of rat pups to prolonged alterations in plasma osmolality may permanently alter (imprint) pituitary arginine vasopressin content and adult responses to osmotic challenges. Our objective was to investigate fetal developmental changes and the impact of maternal dehydration and maternal hyponatremia on fetal pituitary arginine vasopressin content and hypothalamic arginine vasopressin messenger ribonucleic acid expression. STUDY DESIGN: Ten pregnant ewes with singleton fetuses (135 ± 1 day) were chronically prepared with maternal vascular catheters. Ewes were assigned to receive water deprivation (n = 4) [desamino, D-Arg8]-arginine vasopressin-induced plasma hyponatremia (n = 3), or 4 days of observation (n = 3). Three additional pregnant ewes with preterm (110 ± 1 day) singleton fetuses were also included for a study of maturational effects. Daily maternal blood samples were analyzed for determination of plasma arginine vasopressin, electrolytes, and osmolality. After the study protocol, fetuses were operatively delivered, umbilical blood samples obtained, and fetuses put to death for pituitary and hypothalamic tissues. Pituitary arginine vasopressin content was determined by radioimmunoassay, and hypothalamus arginine vasopressin messenger ribonucleic acid expression was detected by Northern blotting. RESULTS: Dehydration significantly (P < .05) increased, and hyponatremia significantly decreased maternal plasma sodium concentration compared with controls. Fetal plasma sodium concentration significantly changed in parallel with maternal values (dehydration: 139 ± 1 to 150 ± 1 mEq/L; hyponatremia: 138 ± 1 to 128 ± 5 mEq/L). Fetal hypothalamic arginine vasopressin messenger ribonucleic acid expression and pituitary content did not change in relation to these relatively acute alterations in plasma tonicity. However, among all animals, arginine vasopressin messenger ribonucleic acid expression was significantly negatively correlated with pituitary arginine vasopressin content [r2 = 0.563; P = .02). Arginine vasopressin messenger ribonucleic acid expression was significantly lower in both preterm and near-term fetuses (P < .05) than that in the maternal ewe, although pituitary arginine vasopressin content (in micrograms per milligram of protein) was significantly greater in preterm fetuses (P < .01, vs maternal; P < .05, vs near term). CONCLUSIONS: The significant inverse relation between arginine vasopressin content and arginine vasopressin messenger ribonucleic acid suggests a dynamic arginine vasopressin synthesis-content feedback relationship is functional in the near-term fetus. Although relatively acute periods of maternal hypertonicity or hypotonicity do not alter fetal pituitary arginine vasopressin content or hypothalamic arginine vasopressin messenger ribonucleic acid expression, longer-term plasma tonicity alterations may potentially have an impact on the fetal arginine vasopressin hypothalamic-pituitary axis.

AB - OBJECTIVE: Fetal arginine vasopressin contributes to fetal and amniotic fluid homeostasis by increasing water resorption in the kidney and, at higher plasma levels, circulatory homeostasis by vasopressor effects. In utero and neonatal exposure of rat pups to prolonged alterations in plasma osmolality may permanently alter (imprint) pituitary arginine vasopressin content and adult responses to osmotic challenges. Our objective was to investigate fetal developmental changes and the impact of maternal dehydration and maternal hyponatremia on fetal pituitary arginine vasopressin content and hypothalamic arginine vasopressin messenger ribonucleic acid expression. STUDY DESIGN: Ten pregnant ewes with singleton fetuses (135 ± 1 day) were chronically prepared with maternal vascular catheters. Ewes were assigned to receive water deprivation (n = 4) [desamino, D-Arg8]-arginine vasopressin-induced plasma hyponatremia (n = 3), or 4 days of observation (n = 3). Three additional pregnant ewes with preterm (110 ± 1 day) singleton fetuses were also included for a study of maturational effects. Daily maternal blood samples were analyzed for determination of plasma arginine vasopressin, electrolytes, and osmolality. After the study protocol, fetuses were operatively delivered, umbilical blood samples obtained, and fetuses put to death for pituitary and hypothalamic tissues. Pituitary arginine vasopressin content was determined by radioimmunoassay, and hypothalamus arginine vasopressin messenger ribonucleic acid expression was detected by Northern blotting. RESULTS: Dehydration significantly (P < .05) increased, and hyponatremia significantly decreased maternal plasma sodium concentration compared with controls. Fetal plasma sodium concentration significantly changed in parallel with maternal values (dehydration: 139 ± 1 to 150 ± 1 mEq/L; hyponatremia: 138 ± 1 to 128 ± 5 mEq/L). Fetal hypothalamic arginine vasopressin messenger ribonucleic acid expression and pituitary content did not change in relation to these relatively acute alterations in plasma tonicity. However, among all animals, arginine vasopressin messenger ribonucleic acid expression was significantly negatively correlated with pituitary arginine vasopressin content [r2 = 0.563; P = .02). Arginine vasopressin messenger ribonucleic acid expression was significantly lower in both preterm and near-term fetuses (P < .05) than that in the maternal ewe, although pituitary arginine vasopressin content (in micrograms per milligram of protein) was significantly greater in preterm fetuses (P < .01, vs maternal; P < .05, vs near term). CONCLUSIONS: The significant inverse relation between arginine vasopressin content and arginine vasopressin messenger ribonucleic acid suggests a dynamic arginine vasopressin synthesis-content feedback relationship is functional in the near-term fetus. Although relatively acute periods of maternal hypertonicity or hypotonicity do not alter fetal pituitary arginine vasopressin content or hypothalamic arginine vasopressin messenger ribonucleic acid expression, longer-term plasma tonicity alterations may potentially have an impact on the fetal arginine vasopressin hypothalamic-pituitary axis.

KW - Dehydration

KW - Fetal maturation

KW - Hyponatremia

KW - Pituitary arginine vasopressin content

KW - Sheep hypothalamic arginine vasopressin messenger ribonucleic acid

UR - http://www.scopus.com/inward/record.url?scp=0031769848&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0031769848&partnerID=8YFLogxK

U2 - 10.1016/S0002-9378(98)70186-3

DO - 10.1016/S0002-9378(98)70186-3

M3 - Article

C2 - 9790367

AN - SCOPUS:0031769848

VL - 179

SP - 899

EP - 905

JO - American Journal of Obstetrics and Gynecology

JF - American Journal of Obstetrics and Gynecology

SN - 0002-9378

IS - 4

ER -