Regional wave travel and reflections along the human aorta: A study with six simultaneous micromanometric pressures

R. D. Latham, N. Westerhof, P. Sipkema, B. J. Rubal, P. Reuderink, J. P. Murgo

Research output: Contribution to journalArticle

332 Scopus citations

Abstract

The human aorta and its terminal branches were investigated in normal subjects during elective cardiac catheterization to evaluate regional wave travel and arterial wave reflections. A specially designed catheter with six micromanometers equally spaced at 10 cm intervals was positioned with the tip sensor in the distal external iliac artery and the proximal sensor in the aortic arch. Simultaneous pressures were obtained and analyzed for foot-to-foot wave velocity, and Fourier analysis was used to derive apparent phase velocity. These quantities were assessed during control (n = 9), during Valsalva (n = 8) and Muller (n = 4) maneuvers, and during femoral artery occlusion by bilateral manual compression (n = 8). During control, regional cross-sectional areas, determined from aortography, and regional foot-to-foot pulse wave velocities were used to calculate the local reflection coefficient in the proximal descending aorta (Γ = 0.05), at the junction of the renal arteries (Γ = 0.43), and at the terminal aortic bifurcation (Γ= 0.13). To test the hypothesis that significant reflections originate in the aorta, at the level of the renal arteries, aortograms were used to design a latex tube model with geometric properties similar to the descending aorta. Velocities and reflection characteristics in the model and in vivo were compared. Inspection of thoracic aortic pressures under control conditions revealed a reflected wave originating from the region of the aorta at the level of the renal arterial branches while abdominal pressures exhibited reflection from a site peripheral to the terminal aortic bifurcation. In the low frequency range, apparent phase velocity was found to be higher proximal to the renal arteries as compared with at the distal sites. In addition, the minimum value occurred at a higher frequency in the lower thoracic aorta than at more distal sites. The effects of reflection on apparent wave velocity in the tube model were consistent with data obtained in vivo. The Valsalva maneuver diminished the reflection from the aortic region of the renal arteries, thus allowing the distal reflected wave to become more evident on the thoracic pressure waveforms. Bilateral femoral artery occlusion usually enhanced the distal reflection and the Muller maneuver usually resulted in small increases in reflections. In conclusion, the geometric and elastic nonuniformity of the aorta results in two major reflection site is located at the aortic level of the renal arterial branches and the second reflection site is located distal to the terminal aortic bifurcation.

Original languageEnglish (US)
Pages (from-to)1257-1269
Number of pages13
JournalCirculation
Volume72
Issue number6
DOIs
StatePublished - Jan 1 1985

ASJC Scopus subject areas

  • Cardiology and Cardiovascular Medicine
  • Physiology (medical)

Fingerprint Dive into the research topics of 'Regional wave travel and reflections along the human aorta: A study with six simultaneous micromanometric pressures'. Together they form a unique fingerprint.

  • Cite this