Reactive oxygen intermediates, molecular damage, and aging: Relation to melatonin

Russel J. Reiter, Juan M. Guerrero, Joaquin J. Garcia, Dario Acuña-Castroviejo

Research output: Contribution to journalArticlepeer-review

183 Scopus citations


Melatonin, the chief secretory product of the pineal gland, is a direct free radical scavenger and indirect antioxidant. In terms of its scavenging activity, melatonin has been shown to quench the hydroxyl radical, superoxide anion radical, singlet oxygen, peroxyl radical, and the peroxynitrite anion. Additionally, melatonin's antioxidant actions probably derive from its stimulatory effect on superoxide dismutase, glutathione peroxidase, glutathione reductase, and glucose-6-phosphate dehydrogenase and its inhibitory action on nitric oxide synthase. Finally, melatonin acts to stabilize cell membranes, thereby making them more resistant to oxidative attack. Melatonin is devoid of prooxidant actions. In models of oxidative stress, melatonin has been shown to resist lipid peroxidation induced by paraquat, lipopolysaccharide, ischemia reperfusion, L-cysteine, potassium cyanide, cadmium chloride, glutathione depletion, alloxan, and alcohol ingestion. Likewise, free radical damage to DNA induced by ionizing radiation, the chemical carcinogen safrole, lipopolysaccharide, and kainic acid are inhibited by melatonin. These findings illustrate that melatonin, due to its high lipid solubility and modest aqueous solubility, is able to protect macromolecules in all parts of the cell from oxidative damage. Melatonin also prevents the inhibitory action of ruthenium red at the level of the mitochondria, thereby promoting ATP production. In humans, the total antioxidative capacity of serum is related to melatonin levels. Thus, the reduction in melatonin with age may be a factor in increased oxidative damage in the elderly.

Original languageEnglish (US)
Pages (from-to)410-424
Number of pages15
JournalAnnals of the New York Academy of Sciences
StatePublished - 1998

ASJC Scopus subject areas

  • Neuroscience(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • History and Philosophy of Science


Dive into the research topics of 'Reactive oxygen intermediates, molecular damage, and aging: Relation to melatonin'. Together they form a unique fingerprint.

Cite this