Rapidly polymerizing injectable click hydrogel therapy to delay bone growth in a murine re-synostosis model

Christopher D. Hermann, David S. Wilson, Kelsey A. Lawrence, Xinghai Ning, Rene Olivares-Navarrete, Joseph K. Williams, Robert E. Guldberg, Niren Murthy, Zvi Schwartz, Barbara D. Boyan

Research output: Contribution to journalArticle

25 Scopus citations

Abstract

Craniosynostosis is the premature fusion of cranial sutures, which can result in progressive cranial deformations, increased intracranial pressure, and restricted brain growth. Most cases of craniosynostosis require surgical reconstruction of the cranial vault with the goal of increasing the intracranial volume and correcting the craniofacial deformities. However, patients often experience rapid post-operative bone regrowth, known as re-synostosis, which necessitates additional surgical intervention. Bone morphogenetic protein (BMP) inhibitors have tremendous potential to treat re-synostosis, but the realization of a clinically viable inhibitor-based therapeutic requires the development of a delivery vehicle that can localize the release to the site of administration. Here, we present an in situ rapidly crosslinking injectable hydrogel that has the properties necessary to encapsulate co-administered proteins and demonstrate that the delivery of rmGremlin1 via our hydrogel system delays bone regrowth in a weanling mouse model of re-synostosis. Our hydrogel is composed of two mutually reactive poly(ethylene glycol) macromolecules, which when mixed crosslink via a bio-orthogonal Cu free click reaction. Hydrogels containing Gremlin caused a dose dependent inhibition of bone regrowth. In addition to craniofacial applications, our injectable click hydrogel has the potential to provide customizable protein, small molecule, and cell delivery to any site accessible via needle or catheter.

Original languageEnglish (US)
Pages (from-to)9698-9708
Number of pages11
JournalBiomaterials
Volume35
Issue number36
DOIs
StatePublished - Jan 1 2014

    Fingerprint

Keywords

  • BMP (bone morphogenetic protein)
  • Bone ingrowth
  • Craniosynostosis
  • Hydrogel
  • Re-synostosis

ASJC Scopus subject areas

  • Bioengineering
  • Ceramics and Composites
  • Biophysics
  • Biomaterials
  • Mechanics of Materials

Cite this

Hermann, C. D., Wilson, D. S., Lawrence, K. A., Ning, X., Olivares-Navarrete, R., Williams, J. K., Guldberg, R. E., Murthy, N., Schwartz, Z., & Boyan, B. D. (2014). Rapidly polymerizing injectable click hydrogel therapy to delay bone growth in a murine re-synostosis model. Biomaterials, 35(36), 9698-9708. https://doi.org/10.1016/j.biomaterials.2014.07.065