TY - JOUR
T1 - Rapid membrane responses to dihydrotestosterone are sex dependent in growth plate chondrocytes
AU - Elbaradie, Khairat
AU - Wang, Yun
AU - Boyan, Barbara D.
AU - Schwartz, Zvi
N1 - Funding Information:
This work was supported by Children's Healthcare of Atlanta , the Price Gilbert, Jr. Foundation and Sector Missions of Cultural Relations at the Ministry of Higher Education Arab Republic of Egypt.
PY - 2012/10
Y1 - 2012/10
N2 - Sex steroids are important regulators for longitudinal growth, bone mass accrual, and sexual dimorphism of the skeleton. 17β-Estradiol regulates proliferation and differentiation of female chondrocytes via a membrane-associated signaling pathway in addition to its estrogen receptor (ER) mediated effects. In contrast, testosterone does not elicit a similar membrane response, either in male or female cells. Whereas female rat growth plate chondrocytes convert testosterone to 17β-estradiol, male chondrocytes produce 5α-dihydrotestosterone (DHT). Previously DHT was found to mediate sex-specific effects of testosterone in male cells, but it is not known if a membrane-signaling pathway is involved. In this study, we hypothesized that DHT can induce sex-specific rapid membrane effects similar to other steroid hormones. Confluent cultures of chondrocytes isolated from resting zones of growth plates of both male and female rats were treated with 10 -10-10-7 M testosterone or DHT for 3, 9, 90 and 270 min and protein kinase C (PKC) and phospholipase A2 (PLA2) activities were measured. To examine potential signaling pathways involved in PKC activation, male chondrocytes were treated with 10-7 M DHT for 9 min in the presence or absence of the phospholipase C (PLC) inhibitor U73122, the secretory PLA2 inhibitor quinacrine or the cytosolic PLA2 inhibitor AACOCF3; the Gαi inhibitor pertussis toxin (PTX) or Gαs activator cholera toxin (CTX), and the general G-protein inhibitor GDPβS; thapsigargin, an inhibitor of a Ca-ATPase pump in the endoplasmic reticulum; verapamil and nifedipine, inhibitors of specific L type Ca2+ channels on the cell membrane; and cyproterone acetate (CPA), which is an inhibitor of the classical androgen receptor (AR); as well as the transcription inhibitor actinomycin D, or the translation inhibitor cycloheximide. DHT induced a dose-dependent increase in PKC and PLA2 activity in male cells with the highest increase at 10-7 M DHT (p < 0.05), whereas testosterone had no effect. PKC activity was augmented at 9 and 90 min, and then decreased to baseline at 270 min. Neither testosterone nor DHT affected PKC in female cells. U73122, quinacrine, and AACOCF3 inhibited DHT-induced activation of PKC. DHT treatment for 9 min had no effect in [3H]-thymidine incorporation in quiescent confluent cultures but caused a dose dependent increase in alkaline phosphatase specific activity. Inhibition of PLC reduced the response of to DHT in a dose dependent manner, indicating that PLC is involved. In conclusion, our study indicates that DHT, but not testosterone, has sex-specific rapid membrane effects in male growth plate chondrocytes involving PLC and PLA2-mediated PKC signaling pathways. Together with previous observations showing that male cells convert testosterone to DHT, these results suggest that DHT might act in the membrane through an autocrine/paracrine mechanism.
AB - Sex steroids are important regulators for longitudinal growth, bone mass accrual, and sexual dimorphism of the skeleton. 17β-Estradiol regulates proliferation and differentiation of female chondrocytes via a membrane-associated signaling pathway in addition to its estrogen receptor (ER) mediated effects. In contrast, testosterone does not elicit a similar membrane response, either in male or female cells. Whereas female rat growth plate chondrocytes convert testosterone to 17β-estradiol, male chondrocytes produce 5α-dihydrotestosterone (DHT). Previously DHT was found to mediate sex-specific effects of testosterone in male cells, but it is not known if a membrane-signaling pathway is involved. In this study, we hypothesized that DHT can induce sex-specific rapid membrane effects similar to other steroid hormones. Confluent cultures of chondrocytes isolated from resting zones of growth plates of both male and female rats were treated with 10 -10-10-7 M testosterone or DHT for 3, 9, 90 and 270 min and protein kinase C (PKC) and phospholipase A2 (PLA2) activities were measured. To examine potential signaling pathways involved in PKC activation, male chondrocytes were treated with 10-7 M DHT for 9 min in the presence or absence of the phospholipase C (PLC) inhibitor U73122, the secretory PLA2 inhibitor quinacrine or the cytosolic PLA2 inhibitor AACOCF3; the Gαi inhibitor pertussis toxin (PTX) or Gαs activator cholera toxin (CTX), and the general G-protein inhibitor GDPβS; thapsigargin, an inhibitor of a Ca-ATPase pump in the endoplasmic reticulum; verapamil and nifedipine, inhibitors of specific L type Ca2+ channels on the cell membrane; and cyproterone acetate (CPA), which is an inhibitor of the classical androgen receptor (AR); as well as the transcription inhibitor actinomycin D, or the translation inhibitor cycloheximide. DHT induced a dose-dependent increase in PKC and PLA2 activity in male cells with the highest increase at 10-7 M DHT (p < 0.05), whereas testosterone had no effect. PKC activity was augmented at 9 and 90 min, and then decreased to baseline at 270 min. Neither testosterone nor DHT affected PKC in female cells. U73122, quinacrine, and AACOCF3 inhibited DHT-induced activation of PKC. DHT treatment for 9 min had no effect in [3H]-thymidine incorporation in quiescent confluent cultures but caused a dose dependent increase in alkaline phosphatase specific activity. Inhibition of PLC reduced the response of to DHT in a dose dependent manner, indicating that PLC is involved. In conclusion, our study indicates that DHT, but not testosterone, has sex-specific rapid membrane effects in male growth plate chondrocytes involving PLC and PLA2-mediated PKC signaling pathways. Together with previous observations showing that male cells convert testosterone to DHT, these results suggest that DHT might act in the membrane through an autocrine/paracrine mechanism.
KW - Androgen receptor
KW - Growth plate chondrocytes
KW - Mechanism of protein kinase C activation
KW - Sex-specific rapid response to dihydrotestosterone
UR - http://www.scopus.com/inward/record.url?scp=84864441029&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84864441029&partnerID=8YFLogxK
U2 - 10.1016/j.jsbmb.2011.12.009
DO - 10.1016/j.jsbmb.2011.12.009
M3 - Article
C2 - 22207084
AN - SCOPUS:84864441029
SN - 0960-0760
VL - 132
SP - 15
EP - 23
JO - Journal of Steroid Biochemistry and Molecular Biology
JF - Journal of Steroid Biochemistry and Molecular Biology
IS - 1-2
ER -