TY - JOUR
T1 - Rapamycin-induced hyperglycemia is associated with exacerbated age-related osteoarthritis
AU - Minton, Dennis M.
AU - Elliehausen, Christian J.
AU - Javors, Martin A.
AU - Santangello, Kelly S.
AU - Konopka, Adam R.
N1 - Funding Information:
The authors would like to thank Greg Friesenhahn at the Analytical Pharmacology and Drug Evaluation Core of the San Antonio Nathan Shock Center. We would also like to acknowledge the technical assistance from William Fairfield, Oscar Safairad, Alex Nichol, Nathan Carper, and Morgan Berland. We also acknowledge the assistance of the University of Wisconsin Translational Research Initiatives in Pathology (TRIP) laboratory supported by the UW Department of Pathology and Laboratory Medicine, UWCCC (P30 CA014520).
Funding Information:
The authors would like to thank Greg Friesenhahn at the Analytical Pharmacology and Drug Evaluation Core of the San Antonio Nathan Shock Center. We would also like to acknowledge the technical assistance from William Fairfield, Oscar Safairad, Alex Nichol, Nathan Carper, and Morgan Berland. We also acknowledge the assistance of the University of Wisconsin Translational Research Initiatives in Pathology (TRIP) laboratory supported by the UW Department of Pathology and Laboratory Medicine, UWCCC (P30 CA014520).
Funding Information:
The Konopka Laboratory was supported by the Campus Research Board at the University of Illinois and startup funds from the University of Wisconsin-Madison School of Medicine and Public Health, Department of Medicine, and funding from the National Institutes of Health grant R21 AG067464. This work was supported using facilities and resources from the William S. Middleton Memorial Veterans Hospital. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH, the Department of Veterans Affairs, or the US Government.
Publisher Copyright:
© 2021, The Author(s).
PY - 2021/12
Y1 - 2021/12
N2 - Background: The objective of this study was to determine if mechanistic target of rapamycin (mTOR) inhibition with or without AMP-activated protein kinase (AMPK) activation can protect against primary, age-related OA. Design: Dunkin-Hartley guinea pigs develop mild primary OA pathology by 5 months of age that progresses to moderate OA by 8 months of age. At 5 months, guinea pigs served as young control (n = 3) or were fed either a control diet (n = 8), a diet enriched with the mTOR-inhibitor rapamycin (Rap, 14 ppm, n = 8), or Rap with the AMPK-activator metformin (Rap+Met, 1000 ppm, n = 8) for 12 weeks. Knee joints were evaluated by OARSI scoring, micro-computed tomography, and immunohistochemistry. Glenohumeral articular cartilage was collected for western blotting. Results: Rap- and Rap+Met-treated guinea pigs displayed lower body weight than control. Rap and Rap+Met inhibited articular cartilage mTORC1 but not mTORC2 signaling. Rap+Met, but not Rap alone, stimulated AMPK. Despite lower body weight and articular cartilage mTORC1 inhibition, Rap- and Rap+Met-treated guinea pigs had greater OA severity in the medial tibial plateau due to articular cartilage structural damage and/or proteoglycan loss. Rap and Rap+Met increased plasma glucose compared to control. Plasma glucose concentration was positively correlated with proteoglycan loss, suggesting hyperglycemic stress after Rap treatment was related to worsened OA. Conclusions: This is the first study to show that Rap induced increase in plasma glucose was associated with greater OA severity. Further, articular cartilage mTORC1 inhibition and bodyweight reduction by dietary Rap and Rap+Met did not appear to protect against primary OA during the prevailing hyperglycemia.
AB - Background: The objective of this study was to determine if mechanistic target of rapamycin (mTOR) inhibition with or without AMP-activated protein kinase (AMPK) activation can protect against primary, age-related OA. Design: Dunkin-Hartley guinea pigs develop mild primary OA pathology by 5 months of age that progresses to moderate OA by 8 months of age. At 5 months, guinea pigs served as young control (n = 3) or were fed either a control diet (n = 8), a diet enriched with the mTOR-inhibitor rapamycin (Rap, 14 ppm, n = 8), or Rap with the AMPK-activator metformin (Rap+Met, 1000 ppm, n = 8) for 12 weeks. Knee joints were evaluated by OARSI scoring, micro-computed tomography, and immunohistochemistry. Glenohumeral articular cartilage was collected for western blotting. Results: Rap- and Rap+Met-treated guinea pigs displayed lower body weight than control. Rap and Rap+Met inhibited articular cartilage mTORC1 but not mTORC2 signaling. Rap+Met, but not Rap alone, stimulated AMPK. Despite lower body weight and articular cartilage mTORC1 inhibition, Rap- and Rap+Met-treated guinea pigs had greater OA severity in the medial tibial plateau due to articular cartilage structural damage and/or proteoglycan loss. Rap and Rap+Met increased plasma glucose compared to control. Plasma glucose concentration was positively correlated with proteoglycan loss, suggesting hyperglycemic stress after Rap treatment was related to worsened OA. Conclusions: This is the first study to show that Rap induced increase in plasma glucose was associated with greater OA severity. Further, articular cartilage mTORC1 inhibition and bodyweight reduction by dietary Rap and Rap+Met did not appear to protect against primary OA during the prevailing hyperglycemia.
KW - AMPK
KW - Aging
KW - Dunkin Hartley guinea pig
KW - Primary osteoarthritis
KW - mTOR
UR - http://www.scopus.com/inward/record.url?scp=85116562585&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85116562585&partnerID=8YFLogxK
U2 - 10.1186/s13075-021-02637-1
DO - 10.1186/s13075-021-02637-1
M3 - Article
C2 - 34620223
AN - SCOPUS:85116562585
SN - 1478-6354
VL - 23
JO - Arthritis Research and Therapy
JF - Arthritis Research and Therapy
IS - 1
M1 - 253
ER -