TY - JOUR
T1 - QChIPat
T2 - A quantitative method to identify distinct binding patterns for two biological ChIP-seq samples in different experimental conditions
AU - Liu, Bin
AU - Yi, Jimmy
AU - SV, Aishwarya
AU - Lan, Xun
AU - Ma, Yilin
AU - Huang, Tim H.M.
AU - Leone, Gustavo
AU - Jin, Victor X.
N1 - Funding Information:
The publication costs for this article were funded by University of Texas Health Science Center at San Antonio. This article has been published as part of BMC Genomics Volume 14 Supplement 8, 2013: Selected articles from the International Conference on Intelligent Biology and Medicine (ICIBM 2013): Genomics. The full contents of the supplement are available online at http://www.biomedcentral.com/ bmcgenomics/supplements/14/S8.
Funding Information:
We thank the members in the laboratory for helpful discussions. This study was supported by a Pelotonia Idea Grant from the Ohio State University Comprehensive Cancer Center, the National Natural Science Foundation of China (No. 61300112), the Natural Science Foundation of Guangdong Province (No. S2012040007390), Shanghai Key Laboratory of Intelligent Information Processing, China (Grant No. IIPL-2012-002), and funds from University of Texas Health Science Center at San Antonio.
PY - 2013/12/9
Y1 - 2013/12/9
N2 - Background: Many computational programs have been developed to identify enriched regions for a single biological ChIP-seq sample. Given that many biological questions are often asked to compare the difference between two different conditions, it is important to develop new programs that address the comparison of two biological ChIP-seq samples. Despite several programs designed to address this question, these programs suffer from some drawbacks, such as inability to distinguish whether the identified differential enriched regions are indeed significantly enriched, lack of distinguishing binding patterns, and neglect of the normalization between samples.Results: In this study, we developed a novel quantitative method for comparing two biological ChIP-seq samples, called QChIPat. Our method employs a new global normalization method: nonparametric empirical Bayes (NEB) correction normalization, utilizes pre-defined enriched regions identified from single-sample peak calling programs, uses statistical methods to define differential enriched regions, then defines binding (histone modification) pattern information for those differential enriched regions. Our program was tested on a benchmark data: histone modifications data used by ChIPDiffs. It was then applied on two study cases: one to identify differential histone modification sites for ChIP-seq of H3K27me3 and H3K9me2 data in AKT1-transfected MCF10A cells; the other to identify differential binding sites for ChIP-seq of TCF7L2 data in MCF7 and PANC1 cells.Conclusions: Several advantages of our program include: 1) it considers a control (or input) experiment; 2) it incorporates a novel global normalization strategy: nonparametric empirical Bayes correction normalization; 3) it provides the binding pattern information among different enriched regions. QChIPat is implemented in R, Perl and C++, and has been tested under Linux. The R package is available at http://motif.bmi.ohio-state.edu/QChIPat.
AB - Background: Many computational programs have been developed to identify enriched regions for a single biological ChIP-seq sample. Given that many biological questions are often asked to compare the difference between two different conditions, it is important to develop new programs that address the comparison of two biological ChIP-seq samples. Despite several programs designed to address this question, these programs suffer from some drawbacks, such as inability to distinguish whether the identified differential enriched regions are indeed significantly enriched, lack of distinguishing binding patterns, and neglect of the normalization between samples.Results: In this study, we developed a novel quantitative method for comparing two biological ChIP-seq samples, called QChIPat. Our method employs a new global normalization method: nonparametric empirical Bayes (NEB) correction normalization, utilizes pre-defined enriched regions identified from single-sample peak calling programs, uses statistical methods to define differential enriched regions, then defines binding (histone modification) pattern information for those differential enriched regions. Our program was tested on a benchmark data: histone modifications data used by ChIPDiffs. It was then applied on two study cases: one to identify differential histone modification sites for ChIP-seq of H3K27me3 and H3K9me2 data in AKT1-transfected MCF10A cells; the other to identify differential binding sites for ChIP-seq of TCF7L2 data in MCF7 and PANC1 cells.Conclusions: Several advantages of our program include: 1) it considers a control (or input) experiment; 2) it incorporates a novel global normalization strategy: nonparametric empirical Bayes correction normalization; 3) it provides the binding pattern information among different enriched regions. QChIPat is implemented in R, Perl and C++, and has been tested under Linux. The R package is available at http://motif.bmi.ohio-state.edu/QChIPat.
UR - http://www.scopus.com/inward/record.url?scp=84889687271&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84889687271&partnerID=8YFLogxK
U2 - 10.1186/1471-2164-14-S8-S3
DO - 10.1186/1471-2164-14-S8-S3
M3 - Article
C2 - 24564479
AN - SCOPUS:84889687271
SN - 1471-2164
VL - 14
JO - BMC genomics
JF - BMC genomics
IS - SUPP 8
M1 - S3
ER -