Purification of 3,5-Dichlorocatechol 1,2-Dioxygenase, a Nonheme Iron Dioxygenase and a Key Enzyme in the Biodegradation of a Herbicide, 2,4-Dichlorophenoxyacetic acid (2,4-D), from Pseudomonas cepacia CSV90

Manzoor Bhat, T. Ishida, K. Horiike, C. S. Vaidyanathan, M. Nozaki

Research output: Contribution to journalArticle

31 Citations (Scopus)

Abstract

An enzyme which cleaves the benzene ring of 3,5-dichiorocatechol has been purified to homogeneity from Pseudomonas cepacia CSV90, grown with 2,4-dichlorophenoxyacetic acid (2,4-D) as the sole carbon source. The enzyme was a nonheme ferric dioxygenase and catalyzed the intradiol cleavage of all the examined catechol derivatives, 3,5-dichlorocatechol having the highest specificity constant of 7.3 μM-1 s-1 in an air-saturated buffer. No extradiol-cleaving activity was observed. Thus, the enzyme was designated as 3,5-dichlorocatechol 1,2-dioxygenase. The molecular weight of the native enzyme was ascertained to be 56,000 by light scattering method, while the Mr value of the enzyme denatured with 6 M guanidine-HCl or sodium dodecyl sulfate was 29,000 or 31,600, respectively, suggesting that the enzyme was a homodimer. The iron content was estimated to be 0.89 mol per mole of enzyme. The enzyme was deep red and exhibited a broad absorption spectrum with a maximum at around 425 nm, which was bleached by sodium dithionite, and shifted to 515 nm upon anaerobic 3,5-dichlorocatechol binding. The catalytic constant and the Km values for 3,5-dichlorocatechol and oxygen were 34.7 s-1 and 4.4 and 652 μM, respectively, at pH 8 and 25°C. Some heavy metal ions, chelating agents and sulfhydryl reagents inhibited the activity. The NH2-terminal sequence was determined up to 44 amino acid residues and compared with those of the other catechol dioxygenases previously reported.

Original languageEnglish (US)
Pages (from-to)738-746
Number of pages9
JournalArchives of Biochemistry and Biophysics
Volume300
Issue number2
DOIs
StatePublished - Feb 1 1993
Externally publishedYes

Fingerprint

Burkholderia cepacia
Dioxygenases
2,4-Dichlorophenoxyacetic Acid
Herbicides
Biodegradation
Purification
Iron
Enzymes
Dithionite
Heavy Ions
Sulfhydryl Reagents
3,5-dichlorocatechol 1,2-dioxygenase
Guanidine
Chelating Agents
Heavy Metals
Benzene
Heavy ions
Sodium Dodecyl Sulfate
Light scattering
Metal ions

ASJC Scopus subject areas

  • Molecular Biology
  • Biophysics
  • Biochemistry

Cite this

@article{14e46fe61aac443da55bd9676ea3a997,
title = "Purification of 3,5-Dichlorocatechol 1,2-Dioxygenase, a Nonheme Iron Dioxygenase and a Key Enzyme in the Biodegradation of a Herbicide, 2,4-Dichlorophenoxyacetic acid (2,4-D), from Pseudomonas cepacia CSV90",
abstract = "An enzyme which cleaves the benzene ring of 3,5-dichiorocatechol has been purified to homogeneity from Pseudomonas cepacia CSV90, grown with 2,4-dichlorophenoxyacetic acid (2,4-D) as the sole carbon source. The enzyme was a nonheme ferric dioxygenase and catalyzed the intradiol cleavage of all the examined catechol derivatives, 3,5-dichlorocatechol having the highest specificity constant of 7.3 μM-1 s-1 in an air-saturated buffer. No extradiol-cleaving activity was observed. Thus, the enzyme was designated as 3,5-dichlorocatechol 1,2-dioxygenase. The molecular weight of the native enzyme was ascertained to be 56,000 by light scattering method, while the Mr value of the enzyme denatured with 6 M guanidine-HCl or sodium dodecyl sulfate was 29,000 or 31,600, respectively, suggesting that the enzyme was a homodimer. The iron content was estimated to be 0.89 mol per mole of enzyme. The enzyme was deep red and exhibited a broad absorption spectrum with a maximum at around 425 nm, which was bleached by sodium dithionite, and shifted to 515 nm upon anaerobic 3,5-dichlorocatechol binding. The catalytic constant and the Km values for 3,5-dichlorocatechol and oxygen were 34.7 s-1 and 4.4 and 652 μM, respectively, at pH 8 and 25°C. Some heavy metal ions, chelating agents and sulfhydryl reagents inhibited the activity. The NH2-terminal sequence was determined up to 44 amino acid residues and compared with those of the other catechol dioxygenases previously reported.",
author = "Manzoor Bhat and T. Ishida and K. Horiike and Vaidyanathan, {C. S.} and M. Nozaki",
year = "1993",
month = "2",
day = "1",
doi = "10.1006/abbi.1993.1102",
language = "English (US)",
volume = "300",
pages = "738--746",
journal = "Archives of Biochemistry and Biophysics",
issn = "0003-9861",
publisher = "Academic Press Inc.",
number = "2",

}

TY - JOUR

T1 - Purification of 3,5-Dichlorocatechol 1,2-Dioxygenase, a Nonheme Iron Dioxygenase and a Key Enzyme in the Biodegradation of a Herbicide, 2,4-Dichlorophenoxyacetic acid (2,4-D), from Pseudomonas cepacia CSV90

AU - Bhat, Manzoor

AU - Ishida, T.

AU - Horiike, K.

AU - Vaidyanathan, C. S.

AU - Nozaki, M.

PY - 1993/2/1

Y1 - 1993/2/1

N2 - An enzyme which cleaves the benzene ring of 3,5-dichiorocatechol has been purified to homogeneity from Pseudomonas cepacia CSV90, grown with 2,4-dichlorophenoxyacetic acid (2,4-D) as the sole carbon source. The enzyme was a nonheme ferric dioxygenase and catalyzed the intradiol cleavage of all the examined catechol derivatives, 3,5-dichlorocatechol having the highest specificity constant of 7.3 μM-1 s-1 in an air-saturated buffer. No extradiol-cleaving activity was observed. Thus, the enzyme was designated as 3,5-dichlorocatechol 1,2-dioxygenase. The molecular weight of the native enzyme was ascertained to be 56,000 by light scattering method, while the Mr value of the enzyme denatured with 6 M guanidine-HCl or sodium dodecyl sulfate was 29,000 or 31,600, respectively, suggesting that the enzyme was a homodimer. The iron content was estimated to be 0.89 mol per mole of enzyme. The enzyme was deep red and exhibited a broad absorption spectrum with a maximum at around 425 nm, which was bleached by sodium dithionite, and shifted to 515 nm upon anaerobic 3,5-dichlorocatechol binding. The catalytic constant and the Km values for 3,5-dichlorocatechol and oxygen were 34.7 s-1 and 4.4 and 652 μM, respectively, at pH 8 and 25°C. Some heavy metal ions, chelating agents and sulfhydryl reagents inhibited the activity. The NH2-terminal sequence was determined up to 44 amino acid residues and compared with those of the other catechol dioxygenases previously reported.

AB - An enzyme which cleaves the benzene ring of 3,5-dichiorocatechol has been purified to homogeneity from Pseudomonas cepacia CSV90, grown with 2,4-dichlorophenoxyacetic acid (2,4-D) as the sole carbon source. The enzyme was a nonheme ferric dioxygenase and catalyzed the intradiol cleavage of all the examined catechol derivatives, 3,5-dichlorocatechol having the highest specificity constant of 7.3 μM-1 s-1 in an air-saturated buffer. No extradiol-cleaving activity was observed. Thus, the enzyme was designated as 3,5-dichlorocatechol 1,2-dioxygenase. The molecular weight of the native enzyme was ascertained to be 56,000 by light scattering method, while the Mr value of the enzyme denatured with 6 M guanidine-HCl or sodium dodecyl sulfate was 29,000 or 31,600, respectively, suggesting that the enzyme was a homodimer. The iron content was estimated to be 0.89 mol per mole of enzyme. The enzyme was deep red and exhibited a broad absorption spectrum with a maximum at around 425 nm, which was bleached by sodium dithionite, and shifted to 515 nm upon anaerobic 3,5-dichlorocatechol binding. The catalytic constant and the Km values for 3,5-dichlorocatechol and oxygen were 34.7 s-1 and 4.4 and 652 μM, respectively, at pH 8 and 25°C. Some heavy metal ions, chelating agents and sulfhydryl reagents inhibited the activity. The NH2-terminal sequence was determined up to 44 amino acid residues and compared with those of the other catechol dioxygenases previously reported.

UR - http://www.scopus.com/inward/record.url?scp=0027329037&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0027329037&partnerID=8YFLogxK

U2 - 10.1006/abbi.1993.1102

DO - 10.1006/abbi.1993.1102

M3 - Article

C2 - 7679568

AN - SCOPUS:0027329037

VL - 300

SP - 738

EP - 746

JO - Archives of Biochemistry and Biophysics

JF - Archives of Biochemistry and Biophysics

SN - 0003-9861

IS - 2

ER -