Abstract
Ewing sarcoma is a cancer of bone and soft tissue in children that is characterized by a chromosomal translocation involving EWS and an Ets family transcription factor, most commonly Fli-1. EWS-Fli-1 fusion accounts for 85% of cases. The growth and survival of Ewing sarcoma cells are critically dependent on EWS-Fli-1. A large body of evidence has established that EWS-Fli-1 functions as a DNA-binding transcription factor that regulates the expression of a number of genes important for cell proliferation and transformation. However, little is known about the biochemical properties of the EWS-Fli-1 protein. We undertook a series of proteomic analyses to dissect the EWS-Fli-1 interactome. Employing a proximity-dependent biotinylation technique, BioID, we identified cation-independent mannose 6-phosphate receptor (CIMPR) as a protein located in the vicinity of EWS-Fli-1 within a cell. CIMPR is a cargo that mediates the delivery of lysosomal hydrolases from the trans-Golgi network to the endosome, which are subsequently transferred to the lysosomes. Further molecular cell biological analyses uncovered a role for lysosomes in the turnover of the EWS-Fli-1 protein. We demonstrate that an mTORC1 active-site inhibitor, torin 1, which stimulates the TFEB-lysosome pathway, can induce the degradation of EWS-Fli-1, suggesting a potential therapeutic approach to target EWS-Fli-1 for degradation.
Original language | English (US) |
---|---|
Pages (from-to) | 3783-3791 |
Number of pages | 9 |
Journal | Journal of Proteome Research |
Volume | 13 |
Issue number | 8 |
DOIs | |
State | Published - Aug 1 2014 |
Keywords
- EWS-Fli-1
- Ewing sarcoma
- interactome
- lysosome
- protein degradation
- proximity-dependent biotinylation
ASJC Scopus subject areas
- General Chemistry
- Biochemistry