Proteolytic interconversion of electrophoretic variants of the enzyme rhodanese.

P. Horowitz, K. Falksen

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

It has been confirmed that the enzyme rhodanese, although a homogeneous single polypeptide chain protein by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, is separable by electrophoresis under nondenaturing conditions into four species which differ in net surface charge (I-IV in the order of increasing positive charge). Limited proteolysis can interconvert these species. Chymotrypsin converts IV and III to II and forms a small amount of I. Carboxypeptidase B converts IV to III. The total protein among the species remains constant, and two-dimensional gels show that the change induced is below the resolution of the sodium dodecyl sulfate-polyacrylamide gel system. The suggestion that the products can be produced in the order IV, III, and II is supported by the results of sequential treatment of rhodanese first with carboxypeptidase B and then with chymotrypsin. It is concluded that there are covalent differences among the rhodanese species identified to date and an interconversion of forms can be triggered by proteolysis at the COOH-terminal end of the Mr = 33,000 single polypeptide chain which comprises the enzyme. This conclusion is strengthened by the close similarity between the amino acid composition of the peptide released by chymotrypsin and the composition expected on the basis of the known sequence. Furthermore, it appears that form IV is the primary in vivo product and the other species arise from it.

Original languageEnglish (US)
Pages (from-to)1614-1618
Number of pages5
JournalJournal of Biological Chemistry
Volume258
Issue number3
StatePublished - Feb 10 1983
Externally publishedYes

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'Proteolytic interconversion of electrophoretic variants of the enzyme rhodanese.'. Together they form a unique fingerprint.

Cite this