TY - JOUR
T1 - Protective effects of melatonin in reducing oxidative stress and in preserving the fluidity of biological membranes
T2 - A review
AU - García, Joaquín J.
AU - Lõpez-Pingarrõn, Laura
AU - Almeida-Souza, Priscilla
AU - Tres, Alejandro
AU - Escudero, Pilar
AU - García-Gil, Francisco A.
AU - Tan, Dun Xian
AU - Reiter, Russel J.
AU - Ramírez, Jose M.
AU - Bernal-Pérez, Milagros
PY - 2014/4
Y1 - 2014/4
N2 - Free radicals generated within subcellular compartments damage macromolecules which lead to severe structural changes and functional alterations of cellular organelles. A manifestation of free radical injury to biological membranes is the process of lipid peroxidation, an autooxidative chain reaction in which polyunsaturated fatty acids in the membrane are the substrate. There is considerable evidence that damage to polyunsaturated fatty acids tends to reduce membrane fluidity. However, adequate levels of fluidity are essential for the proper functioning of biological membranes. Thus, there is considerable interest in antioxidant molecules which are able to stabilize membranes because of their protective effects against lipid peroxidation. Melatonin is an indoleamine that modulates a wide variety of endocrine, neural and immune functions. Over the last two decades, intensive research has proven this molecule, as well as its metabolites, to possess substantial antioxidant activity. In addition to their ability to scavenge several reactive oxygen and nitrogen species, melatonin increases the activity of the glutathione redox enzymes, that is, glutathione peroxidase and reductase, as well as other antioxidant enzymes. These beneficial effects of melatonin are more significant because of its small molecular size and its amphipathic behaviour, which facilitates ease of melatonin penetration into every subcellular compartment. In the present work, we review the current information related to the beneficial effects of melatonin in maintaining the fluidity of biological membranes against free radical attack, and further, we discuss its implications for ageing and disease.
AB - Free radicals generated within subcellular compartments damage macromolecules which lead to severe structural changes and functional alterations of cellular organelles. A manifestation of free radical injury to biological membranes is the process of lipid peroxidation, an autooxidative chain reaction in which polyunsaturated fatty acids in the membrane are the substrate. There is considerable evidence that damage to polyunsaturated fatty acids tends to reduce membrane fluidity. However, adequate levels of fluidity are essential for the proper functioning of biological membranes. Thus, there is considerable interest in antioxidant molecules which are able to stabilize membranes because of their protective effects against lipid peroxidation. Melatonin is an indoleamine that modulates a wide variety of endocrine, neural and immune functions. Over the last two decades, intensive research has proven this molecule, as well as its metabolites, to possess substantial antioxidant activity. In addition to their ability to scavenge several reactive oxygen and nitrogen species, melatonin increases the activity of the glutathione redox enzymes, that is, glutathione peroxidase and reductase, as well as other antioxidant enzymes. These beneficial effects of melatonin are more significant because of its small molecular size and its amphipathic behaviour, which facilitates ease of melatonin penetration into every subcellular compartment. In the present work, we review the current information related to the beneficial effects of melatonin in maintaining the fluidity of biological membranes against free radical attack, and further, we discuss its implications for ageing and disease.
KW - lipid bilayer
KW - lipid peroxidation
KW - melatonin
KW - membrane fluidity
KW - oxidative stress
UR - http://www.scopus.com/inward/record.url?scp=84896116486&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84896116486&partnerID=8YFLogxK
U2 - 10.1111/jpi.12128
DO - 10.1111/jpi.12128
M3 - Review article
C2 - 24571249
AN - SCOPUS:84896116486
SN - 0742-3098
VL - 56
SP - 225
EP - 237
JO - Journal of Pineal Research
JF - Journal of Pineal Research
IS - 3
ER -