TY - JOUR
T1 - Proinflammatory stimuli regulate endothelial hyaluronan expression and CD44/HA-dependent primary adhesion
AU - Mohamadzadeh, Mansour
AU - DeGrendele, Heather
AU - Arizpe, Helen
AU - Estess, Pila
AU - Siegelman, Mark
PY - 1998/1/1
Y1 - 1998/1/1
N2 - The localization of circulating leukocytes within inflamed tissues occurs as the result of interactions with and migration across vascular endothelium, and is governed, in part, by the expression of adhesion molecules on both cell types. Recently, we have described a novel primary adhesion interaction between the structurally activated form of the adhesion molecule CD44 on lymphocytes and its major ligand hyaluronan on endothelial cells under physiologic laminar flow conditions, and have proposed that this interaction functions in an extravasation pathway for lymphocytes in vascular beds at sites of inflammation. While the regulation of activated CD44 on leukocytes has been characterized in depth, regulation of hyaluronate (HA) on endothelial cells has not been extensively studied. Here we demonstrate that the expression of HA on cultured endothelial cell lines and primary endothelial cultures is inducible by the proinflammatory cytokines TNFα and IL-1β, as well as bacterial lipopolysaccharide. In addition, this inducibility appears strikingly restricted to endothelial cells derived from microvascular, but not large vessel, sources. The elevated HA levels thus induced result in increased CD44-dependent adhesive interactions in both nonstatic shear and laminar flow adhesion assays. Changes in mRNA levels for the described HA synthetic and degradative enzymes were not found, suggesting other more complex mechanisms of regulation. Together, these data add to the selectin and immunoglobulin gene families a new inducible endothelial adhesive molecule, hyaluronan, and help to further our understanding of the potential physiologic roles of the CD44/HA interaction; i.e., local cytokine production within inflamed vascular beds may enhance surface hyaluronan expression on endothelial cells, thereby creating local sites receptive to the CD44/HA interaction and thus extravasation of inflammatory cells.
AB - The localization of circulating leukocytes within inflamed tissues occurs as the result of interactions with and migration across vascular endothelium, and is governed, in part, by the expression of adhesion molecules on both cell types. Recently, we have described a novel primary adhesion interaction between the structurally activated form of the adhesion molecule CD44 on lymphocytes and its major ligand hyaluronan on endothelial cells under physiologic laminar flow conditions, and have proposed that this interaction functions in an extravasation pathway for lymphocytes in vascular beds at sites of inflammation. While the regulation of activated CD44 on leukocytes has been characterized in depth, regulation of hyaluronate (HA) on endothelial cells has not been extensively studied. Here we demonstrate that the expression of HA on cultured endothelial cell lines and primary endothelial cultures is inducible by the proinflammatory cytokines TNFα and IL-1β, as well as bacterial lipopolysaccharide. In addition, this inducibility appears strikingly restricted to endothelial cells derived from microvascular, but not large vessel, sources. The elevated HA levels thus induced result in increased CD44-dependent adhesive interactions in both nonstatic shear and laminar flow adhesion assays. Changes in mRNA levels for the described HA synthetic and degradative enzymes were not found, suggesting other more complex mechanisms of regulation. Together, these data add to the selectin and immunoglobulin gene families a new inducible endothelial adhesive molecule, hyaluronan, and help to further our understanding of the potential physiologic roles of the CD44/HA interaction; i.e., local cytokine production within inflamed vascular beds may enhance surface hyaluronan expression on endothelial cells, thereby creating local sites receptive to the CD44/HA interaction and thus extravasation of inflammatory cells.
KW - CD44
KW - Cytokines
KW - Endothelial cell
KW - Hyaluronate
KW - Lymphocyte adhesion
UR - http://www.scopus.com/inward/record.url?scp=0031985770&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0031985770&partnerID=8YFLogxK
U2 - 10.1172/JCI1604
DO - 10.1172/JCI1604
M3 - Article
C2 - 9421471
AN - SCOPUS:0031985770
SN - 0021-9738
VL - 101
SP - 97
EP - 108
JO - Journal of Clinical Investigation
JF - Journal of Clinical Investigation
IS - 1
ER -