Preclinical characterization of OSI-027, a potent and selective inhibitor of mTORC1 and mTORC2: Distinct from rapamycin

Shripad V. Bhagwat, Prafulla C. Gokhale, Andrew P. Crew, Andy Cooke, Yan Yao, Christine Mantis, Jennifer Kahler, Jennifer Workman, Mark Bittner, Lorina Dudkin, David M. Epstein, Neil W. Gibson, Robert Wild, Lee D. Arnold, Peter J. Houghton, Jonathan A. Pachter

Research output: Contribution to journalArticlepeer-review

160 Scopus citations

Abstract

The phosphoinositide 3-kinase (PI3K)/AKT/mTOR pathway is frequently activated in human cancers, and mTOR is a clinically validated target. mTOR forms two distinct multiprotein complexes, mTORC1 and mTORC2, which regulate cell growth, metabolism, proliferation, and survival. Rapamycin and its analogues partially inhibit mTOR through allosteric binding to mTORC1, but not mTORC2, and have shown clinical utility in certain cancers. Here, we report the preclinical characterization of OSI-027, a selective and potent dual inhibitor of mTORC1 and mTORC2 with biochemical IC50 values of 22 nmol/L and 65 nmol/L, respectively. OSI-027 shows more than 100-fold selectivity for mTOR relative to PI3Kα, PI3Kβ, PI3Kγ, and DNA-PK. OSI-027 inhibits phosphorylation of the mTORC1 substrates 4E-BP1 and S6K1 as well as the mTORC2 substrate AKT in diverse cancer models in vitro and in vivo. OSI-027 and OXA-01 (close analogue of OSI-027) potently inhibit proliferation of several rapamycin-sensitive and -insensitive nonengineered and engineered cancer cell lines and also, induce cell death in tumor cell lines with activated PI3K-AKT signaling. OSI-027 shows concentration-dependent pharmacodynamic effects on phosphorylation of 4E-BP1 and AKT in tumor tissue with resulting tumor growth inhibition. OSI-027 shows robust antitumor activity in several different human xenograft models representing various histologies. Furthermore, in COLO 205 and GEO colon cancer xenograft models, OSI-027 shows superior efficacy compared with rapamycin. Our results further support the important role of mTOR as a driver of tumor growth and establish OSI-027 as a potent anticancer agent. OSI-027 is currently in phase I clinical trials in cancer patients.

Original languageEnglish (US)
Pages (from-to)1394-1406
Number of pages13
JournalMolecular cancer therapeutics
Volume10
Issue number8
DOIs
StatePublished - Aug 2011
Externally publishedYes

ASJC Scopus subject areas

  • Oncology
  • Cancer Research

Fingerprint

Dive into the research topics of 'Preclinical characterization of OSI-027, a potent and selective inhibitor of mTORC1 and mTORC2: Distinct from rapamycin'. Together they form a unique fingerprint.

Cite this