TY - JOUR
T1 - PRC2-Mediated Epigenetic Suppression of Type i IFN-STAT2 Signaling Impairs Antitumor Immunity in Luminal Breast Cancer
AU - Hong, Juyeong
AU - Lee, Ji Hoon
AU - Zhang, Zhao
AU - Wu, Yanming
AU - Yang, Mei
AU - Liao, Yiji
AU - De La Rosa, Richard
AU - Scheirer, Jessica
AU - Pechacek, Douglas
AU - Zhang, Nu
AU - Xu, Zhenming
AU - Curiel, Tyler
AU - Tan, Xi
AU - Huang, Tim H.M.
AU - Xu, Kexin
N1 - Publisher Copyright:
© 2022 American Association for Cancer Research.
PY - 2022/12/1
Y1 - 2022/12/1
N2 - The immunosuppressive tumor microenvironment in some cancer types, such as luminal breast cancer, supports tumor growth and limits therapeutic efficacy. Identifying approaches to induce an immunostimulatory environment could help improve cancer treatment. Here, we demonstrate that inhibition of cancer-intrinsic EZH2 promotes antitumor immunity in estrogen receptor α-positive (ERα+) breast cancer. EZH2 is a component of the polycomb-repressive complex 2 (PRC2) complex, which catalyzes trimethylation of histone H3 at lysine 27 (H3K27me3). A 53-gene PRC2 activity signature was closely associated with the immune responses of ERα+ breast cancer cells. The stimulatory effects of EZH2 inhibition on immune surveillance required specific activation of type I IFN signaling. Integrative analysis of PRC2-repressed genes and genome-wide H3K27me3 landscape revealed that type I IFN ligands are epigenetically silenced by H3K27me3. Notably, the transcription factor STAT2, but not STAT1, mediated the immunostimulatory functions of type I IFN signaling. Following EZH2 inhibition, STAT2 was recruited to the promoters of IFNstimulated genes even in the absence of the cytokines, suggesting the formation of an autocrine IFN-STAT2 axis. In patients with luminal breast cancer, high levels of EZH2 and low levels of STAT2 were associated with the worst antitumor immune responses. Collectively, this work paves the way for the development of an effective therapeutic strategy that may reverse immunosuppression in cancer.
AB - The immunosuppressive tumor microenvironment in some cancer types, such as luminal breast cancer, supports tumor growth and limits therapeutic efficacy. Identifying approaches to induce an immunostimulatory environment could help improve cancer treatment. Here, we demonstrate that inhibition of cancer-intrinsic EZH2 promotes antitumor immunity in estrogen receptor α-positive (ERα+) breast cancer. EZH2 is a component of the polycomb-repressive complex 2 (PRC2) complex, which catalyzes trimethylation of histone H3 at lysine 27 (H3K27me3). A 53-gene PRC2 activity signature was closely associated with the immune responses of ERα+ breast cancer cells. The stimulatory effects of EZH2 inhibition on immune surveillance required specific activation of type I IFN signaling. Integrative analysis of PRC2-repressed genes and genome-wide H3K27me3 landscape revealed that type I IFN ligands are epigenetically silenced by H3K27me3. Notably, the transcription factor STAT2, but not STAT1, mediated the immunostimulatory functions of type I IFN signaling. Following EZH2 inhibition, STAT2 was recruited to the promoters of IFNstimulated genes even in the absence of the cytokines, suggesting the formation of an autocrine IFN-STAT2 axis. In patients with luminal breast cancer, high levels of EZH2 and low levels of STAT2 were associated with the worst antitumor immune responses. Collectively, this work paves the way for the development of an effective therapeutic strategy that may reverse immunosuppression in cancer.
UR - http://www.scopus.com/inward/record.url?scp=85160052861&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85160052861&partnerID=8YFLogxK
U2 - 10.1158/0008-5472.CAN-22-0736
DO - 10.1158/0008-5472.CAN-22-0736
M3 - Article
C2 - 36222718
AN - SCOPUS:85160052861
SN - 0008-5472
VL - 82
SP - 4624
EP - 4640
JO - Cancer Research
JF - Cancer Research
IS - 24
ER -