Postcranial skeletal pneumaticity: A case study in the use of quantitative microCT to assess vertebral structure in birds

R. J. Fajardo, E. Hernandez, P. M. O'connor

Research output: Contribution to journalArticlepeer-review

23 Scopus citations

Abstract

Limb elements in birds have been characterized as exhibiting a reduction in trabecular bone, thinner cortices and decreased bending strength when pneumatized, yet it is unclear if these characteristics generalize to the axial skeleton. Thin section techniques, the traditional gold standard for bone structure studies, have most commonly been applied to the study of avian bone. This destructive technique, however, makes it subsequently impossible to use the same samples in experimental testing systems that allow researchers to correlate structure with the mechanical properties of the bone. Micro-computed tomography (μCT), a non-destructive X-ray imaging technique, can be used to assess the effect of pneumatization on vertebral cortical and trabecular bone through virtual extraction and structural quantification of each tissue type. We conducted a preliminary investigation of the application of μCT methods to the study of cortical and trabecular bone structure in a small sample of pneumatic and apneumatic thoracic vertebrae. The sample consisted of two similar-sized anatids, Aix sponsa (n = 7) and Oxyura jamaicensis (n = 5). Volumes of interest were created that contoured (outlined) the boundaries of the ventral cortical bone shell, the trabecular compartment and the whole centrum (cortical bone +; trabecular bone), and allowed independent structural analysis of each volume of interest. Results indicated that bone volume fraction of the whole centrum was significantly higher in the apneumatic O. jamaicensis than in the pneumatized A. sponsa (A. sponsa = 36%;, O. jamaicensis = 48%, P < 0.05). In contrast, trabecular bone volume fraction was similar between the two species. The ventral cortical bone shell was approximately 23% thinner (P < 0.05) in A. sponsa (0.133 mm) compared with apneumatic O. jamaicensis (0.172 mm). This case study demonstrates that μCT is a powerful non-destructive imaging technique that may be applied to the three-dimensional study of avian bone. The preliminary results suggest that pneumatic and apneumatic vertebrae of comparably sized avian species differ in relative bone volume, with the largest difference apparent at the level of the cortex, and not within trabecular bone. The presence of relatively thin cortices in pneumatic vertebrae is consistent with previous studies contrasting diaphyseal cortical bone between pneumatic and apneumatic long bones. Methodological issues related to this and any comparative μCT study of bone structure are discussed.

Original languageEnglish (US)
Pages (from-to)138-147
Number of pages10
JournalJournal of Anatomy
Volume211
Issue number1
DOIs
StatePublished - Jul 2007

Keywords

  • Aves
  • Comparative morphology
  • Micro-computed tomography
  • Pneumaticity
  • Vertebral column

ASJC Scopus subject areas

  • Anatomy
  • Ecology, Evolution, Behavior and Systematics
  • Histology
  • Molecular Biology
  • Developmental Biology
  • Cell Biology

Fingerprint Dive into the research topics of 'Postcranial skeletal pneumaticity: A case study in the use of quantitative microCT to assess vertebral structure in birds'. Together they form a unique fingerprint.

Cite this