Peroxidase H2O2 halide system: cytotoxic effect on mammalian tumor cells

R. A. Clark, S. J. Klebanoff, A. B. Einstein, A. Fefer

Research output: Contribution to journalArticlepeer-review

115 Scopus citations


Myeloperoxidase, H2O2, and a halide constitute a potent antimicrobial system. A cytotoxic effect of this system on a line of mouse ascitic lymphoma cells (LSTRA) is demonstrated here using 4 different assay systems: 51Cr release, trypan blue exclusion, inhibition of glucose C 1 oxidation, and loss of oncogenicity for mice. Deletion of each component of the system, preheating the peroxidase, or addition of azide, cyanide, or catalase abolished the cytotoxicity. Myeloperoxidase was effective with either chloride or iodide as the halide, while lactoperoxidase was effective with iodide but not chloride. The iodinated thyroid hormones, triiodothyronine and thyroxine, could substitute for the the halide, and H2O2 could be replaced by a peroxide generating enzyme system such as glucose and glucose oxidase or by H2O2 producing bacteria such as pneumococci or streptococci. The possibility is raised that the peroxidases of inflammatory cells and certain biologic fluids may affect tumor initiation or growth in vivo.

Original languageEnglish (US)
Pages (from-to)161-170
Number of pages10
Issue number2
StatePublished - 1975
Externally publishedYes

ASJC Scopus subject areas

  • Hematology
  • Biochemistry
  • Cell Biology
  • Immunology


Dive into the research topics of 'Peroxidase H2O2 halide system: cytotoxic effect on mammalian tumor cells'. Together they form a unique fingerprint.

Cite this